Description: If the first factor of a product is a nonempty set, then the product is a set if and only if the second factor is a set. (Contributed by BJ, 2-Apr-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-xpnzexb | |- ( A e. ( V \ { (/) } ) -> ( B e. _V <-> ( A X. B ) e. _V ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-xpexg2 | |- ( A e. ( V \ { (/) } ) -> ( B e. _V -> ( A X. B ) e. _V ) ) |
|
2 | eldifsni | |- ( A e. ( V \ { (/) } ) -> A =/= (/) ) |
|
3 | bj-xpnzex | |- ( A =/= (/) -> ( ( A X. B ) e. _V -> B e. _V ) ) |
|
4 | 2 3 | syl | |- ( A e. ( V \ { (/) } ) -> ( ( A X. B ) e. _V -> B e. _V ) ) |
5 | 1 4 | impbid | |- ( A e. ( V \ { (/) } ) -> ( B e. _V <-> ( A X. B ) e. _V ) ) |