Metamath Proof Explorer


Theorem bj-xpnzexb

Description: If the first factor of a product is a nonempty set, then the product is a set if and only if the second factor is a set. (Contributed by BJ, 2-Apr-2019)

Ref Expression
Assertion bj-xpnzexb
|- ( A e. ( V \ { (/) } ) -> ( B e. _V <-> ( A X. B ) e. _V ) )

Proof

Step Hyp Ref Expression
1 bj-xpexg2
 |-  ( A e. ( V \ { (/) } ) -> ( B e. _V -> ( A X. B ) e. _V ) )
2 eldifsni
 |-  ( A e. ( V \ { (/) } ) -> A =/= (/) )
3 bj-xpnzex
 |-  ( A =/= (/) -> ( ( A X. B ) e. _V -> B e. _V ) )
4 2 3 syl
 |-  ( A e. ( V \ { (/) } ) -> ( ( A X. B ) e. _V -> B e. _V ) )
5 1 4 impbid
 |-  ( A e. ( V \ { (/) } ) -> ( B e. _V <-> ( A X. B ) e. _V ) )