Metamath Proof Explorer


Theorem bj-xpimasn

Description: The image of a singleton, general case. [Change and relabel xpimasn accordingly, maybe to xpima2sn.] (Contributed by BJ, 6-Apr-2019)

Ref Expression
Assertion bj-xpimasn
|- ( ( A X. B ) " { X } ) = if ( X e. A , B , (/) )

Proof

Step Hyp Ref Expression
1 xpima
 |-  ( ( A X. B ) " { X } ) = if ( ( A i^i { X } ) = (/) , (/) , B )
2 disjsn
 |-  ( ( A i^i { X } ) = (/) <-> -. X e. A )
3 eqid
 |-  B = B
4 2 3 ifbieq2i
 |-  if ( ( A i^i { X } ) = (/) , (/) , B ) = if ( -. X e. A , (/) , B )
5 ifnot
 |-  if ( -. X e. A , (/) , B ) = if ( X e. A , B , (/) )
6 1 4 5 3eqtri
 |-  ( ( A X. B ) " { X } ) = if ( X e. A , B , (/) )