Metamath Proof Explorer


Theorem bj-xpima1sn

Description: The image of a singleton by a direct product, empty case. [Change and relabel xpimasn accordingly, maybe to xpima2sn.] (Contributed by BJ, 6-Apr-2019)

Ref Expression
Assertion bj-xpima1sn
|- ( -. X e. A -> ( ( A X. B ) " { X } ) = (/) )

Proof

Step Hyp Ref Expression
1 bj-xpimasn
 |-  ( ( A X. B ) " { X } ) = if ( X e. A , B , (/) )
2 iffalse
 |-  ( -. X e. A -> if ( X e. A , B , (/) ) = (/) )
3 1 2 syl5eq
 |-  ( -. X e. A -> ( ( A X. B ) " { X } ) = (/) )