Description: Alternate proof of bj-xpima1sn . (Contributed by BJ, 6-Apr-2019) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-xpima1snALT | |- ( -. X e. A -> ( ( A X. B ) " { X } ) = (/) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjsn | |- ( ( A i^i { X } ) = (/) <-> -. X e. A ) |
|
2 | xpima1 | |- ( ( A i^i { X } ) = (/) -> ( ( A X. B ) " { X } ) = (/) ) |
|
3 | 1 2 | sylbir | |- ( -. X e. A -> ( ( A X. B ) " { X } ) = (/) ) |