Description: Alternate proof of bj-xpima1sn . (Contributed by BJ, 6-Apr-2019) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-xpima1snALT | |- ( -. X e. A -> ( ( A X. B ) " { X } ) = (/) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | disjsn |  |-  ( ( A i^i { X } ) = (/) <-> -. X e. A ) | |
| 2 | xpima1 |  |-  ( ( A i^i { X } ) = (/) -> ( ( A X. B ) " { X } ) = (/) ) | |
| 3 | 1 2 | sylbir |  |-  ( -. X e. A -> ( ( A X. B ) " { X } ) = (/) ) |