Description: Alternate proof of bj-xpima1sn . (Contributed by BJ, 6-Apr-2019) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-xpima1snALT | ⊢ ( ¬ 𝑋 ∈ 𝐴 → ( ( 𝐴 × 𝐵 ) “ { 𝑋 } ) = ∅ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjsn | ⊢ ( ( 𝐴 ∩ { 𝑋 } ) = ∅ ↔ ¬ 𝑋 ∈ 𝐴 ) | |
2 | xpima1 | ⊢ ( ( 𝐴 ∩ { 𝑋 } ) = ∅ → ( ( 𝐴 × 𝐵 ) “ { 𝑋 } ) = ∅ ) | |
3 | 1 2 | sylbir | ⊢ ( ¬ 𝑋 ∈ 𝐴 → ( ( 𝐴 × 𝐵 ) “ { 𝑋 } ) = ∅ ) |