Metamath Proof Explorer


Theorem bj-taginv

Description: Inverse of tagging. (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion bj-taginv 𝐴 = { 𝑥 ∣ { 𝑥 } ∈ tag 𝐴 }

Proof

Step Hyp Ref Expression
1 bj-snglinv 𝐴 = { 𝑥 ∣ { 𝑥 } ∈ sngl 𝐴 }
2 bj-sngltag ( 𝑥 ∈ V → ( { 𝑥 } ∈ sngl 𝐴 ↔ { 𝑥 } ∈ tag 𝐴 ) )
3 2 elv ( { 𝑥 } ∈ sngl 𝐴 ↔ { 𝑥 } ∈ tag 𝐴 )
4 3 abbii { 𝑥 ∣ { 𝑥 } ∈ sngl 𝐴 } = { 𝑥 ∣ { 𝑥 } ∈ tag 𝐴 }
5 1 4 eqtri 𝐴 = { 𝑥 ∣ { 𝑥 } ∈ tag 𝐴 }