Metamath Proof Explorer


Theorem bj-taginv

Description: Inverse of tagging. (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion bj-taginv
|- A = { x | { x } e. tag A }

Proof

Step Hyp Ref Expression
1 bj-snglinv
 |-  A = { x | { x } e. sngl A }
2 bj-sngltag
 |-  ( x e. _V -> ( { x } e. sngl A <-> { x } e. tag A ) )
3 2 elv
 |-  ( { x } e. sngl A <-> { x } e. tag A )
4 3 abbii
 |-  { x | { x } e. sngl A } = { x | { x } e. tag A }
5 1 4 eqtri
 |-  A = { x | { x } e. tag A }