Metamath Proof Explorer


Theorem bj-tagex

Description: A class is a set if and only if its tagging is a set. (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion bj-tagex
|- ( A e. _V <-> tag A e. _V )

Proof

Step Hyp Ref Expression
1 bj-snglex
 |-  ( A e. _V <-> sngl A e. _V )
2 p0ex
 |-  { (/) } e. _V
3 2 biantru
 |-  ( sngl A e. _V <-> ( sngl A e. _V /\ { (/) } e. _V ) )
4 1 3 bitri
 |-  ( A e. _V <-> ( sngl A e. _V /\ { (/) } e. _V ) )
5 unexb
 |-  ( ( sngl A e. _V /\ { (/) } e. _V ) <-> ( sngl A u. { (/) } ) e. _V )
6 df-bj-tag
 |-  tag A = ( sngl A u. { (/) } )
7 6 eqcomi
 |-  ( sngl A u. { (/) } ) = tag A
8 7 eleq1i
 |-  ( ( sngl A u. { (/) } ) e. _V <-> tag A e. _V )
9 4 5 8 3bitri
 |-  ( A e. _V <-> tag A e. _V )