| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isset |  |-  ( A e. _V <-> E. x x = A ) | 
						
							| 2 |  | pweq |  |-  ( x = A -> ~P x = ~P A ) | 
						
							| 3 | 2 | eximi |  |-  ( E. x x = A -> E. x ~P x = ~P A ) | 
						
							| 4 |  | bj-snglss |  |-  sngl A C_ ~P A | 
						
							| 5 |  | sseq2 |  |-  ( ~P x = ~P A -> ( sngl A C_ ~P x <-> sngl A C_ ~P A ) ) | 
						
							| 6 | 4 5 | mpbiri |  |-  ( ~P x = ~P A -> sngl A C_ ~P x ) | 
						
							| 7 | 6 | eximi |  |-  ( E. x ~P x = ~P A -> E. x sngl A C_ ~P x ) | 
						
							| 8 |  | vpwex |  |-  ~P x e. _V | 
						
							| 9 | 8 | ssex |  |-  ( sngl A C_ ~P x -> sngl A e. _V ) | 
						
							| 10 | 9 | exlimiv |  |-  ( E. x sngl A C_ ~P x -> sngl A e. _V ) | 
						
							| 11 | 3 7 10 | 3syl |  |-  ( E. x x = A -> sngl A e. _V ) | 
						
							| 12 | 1 11 | sylbi |  |-  ( A e. _V -> sngl A e. _V ) | 
						
							| 13 |  | bj-snglinv |  |-  A = { y | { y } e. sngl A } | 
						
							| 14 |  | bj-snsetex |  |-  ( sngl A e. _V -> { y | { y } e. sngl A } e. _V ) | 
						
							| 15 | 13 14 | eqeltrid |  |-  ( sngl A e. _V -> A e. _V ) | 
						
							| 16 | 12 15 | impbii |  |-  ( A e. _V <-> sngl A e. _V ) |