| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isset |
|- ( A e. _V <-> E. x x = A ) |
| 2 |
|
pweq |
|- ( x = A -> ~P x = ~P A ) |
| 3 |
2
|
eximi |
|- ( E. x x = A -> E. x ~P x = ~P A ) |
| 4 |
|
bj-snglss |
|- sngl A C_ ~P A |
| 5 |
|
sseq2 |
|- ( ~P x = ~P A -> ( sngl A C_ ~P x <-> sngl A C_ ~P A ) ) |
| 6 |
4 5
|
mpbiri |
|- ( ~P x = ~P A -> sngl A C_ ~P x ) |
| 7 |
6
|
eximi |
|- ( E. x ~P x = ~P A -> E. x sngl A C_ ~P x ) |
| 8 |
|
vpwex |
|- ~P x e. _V |
| 9 |
8
|
ssex |
|- ( sngl A C_ ~P x -> sngl A e. _V ) |
| 10 |
9
|
exlimiv |
|- ( E. x sngl A C_ ~P x -> sngl A e. _V ) |
| 11 |
3 7 10
|
3syl |
|- ( E. x x = A -> sngl A e. _V ) |
| 12 |
1 11
|
sylbi |
|- ( A e. _V -> sngl A e. _V ) |
| 13 |
|
bj-snglinv |
|- A = { y | { y } e. sngl A } |
| 14 |
|
bj-snsetex |
|- ( sngl A e. _V -> { y | { y } e. sngl A } e. _V ) |
| 15 |
13 14
|
eqeltrid |
|- ( sngl A e. _V -> A e. _V ) |
| 16 |
12 15
|
impbii |
|- ( A e. _V <-> sngl A e. _V ) |