Metamath Proof Explorer


Theorem bj-snglex

Description: A class is a set if and only if its singletonization is a set. (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion bj-snglex
|- ( A e. _V <-> sngl A e. _V )

Proof

Step Hyp Ref Expression
1 isset
 |-  ( A e. _V <-> E. x x = A )
2 pweq
 |-  ( x = A -> ~P x = ~P A )
3 2 eximi
 |-  ( E. x x = A -> E. x ~P x = ~P A )
4 bj-snglss
 |-  sngl A C_ ~P A
5 sseq2
 |-  ( ~P x = ~P A -> ( sngl A C_ ~P x <-> sngl A C_ ~P A ) )
6 4 5 mpbiri
 |-  ( ~P x = ~P A -> sngl A C_ ~P x )
7 6 eximi
 |-  ( E. x ~P x = ~P A -> E. x sngl A C_ ~P x )
8 vpwex
 |-  ~P x e. _V
9 8 ssex
 |-  ( sngl A C_ ~P x -> sngl A e. _V )
10 9 exlimiv
 |-  ( E. x sngl A C_ ~P x -> sngl A e. _V )
11 3 7 10 3syl
 |-  ( E. x x = A -> sngl A e. _V )
12 1 11 sylbi
 |-  ( A e. _V -> sngl A e. _V )
13 bj-snglinv
 |-  A = { y | { y } e. sngl A }
14 bj-snsetex
 |-  ( sngl A e. _V -> { y | { y } e. sngl A } e. _V )
15 13 14 eqeltrid
 |-  ( sngl A e. _V -> A e. _V )
16 12 15 impbii
 |-  ( A e. _V <-> sngl A e. _V )