Metamath Proof Explorer


Theorem bj-snglinv

Description: Inverse of singletonization. (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion bj-snglinv
|- A = { x | { x } e. sngl A }

Proof

Step Hyp Ref Expression
1 bj-snglc
 |-  ( x e. A <-> { x } e. sngl A )
2 1 abbi2i
 |-  A = { x | { x } e. sngl A }