Metamath Proof Explorer


Theorem bj-snglc

Description: Characterization of the elements of A in terms of elements of its singletonization. (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion bj-snglc
|- ( A e. B <-> { A } e. sngl B )

Proof

Step Hyp Ref Expression
1 df-rex
 |-  ( E. x e. B { A } = { x } <-> E. x ( x e. B /\ { A } = { x } ) )
2 bj-elsngl
 |-  ( { A } e. sngl B <-> E. x e. B { A } = { x } )
3 elisset
 |-  ( A e. B -> E. x x = A )
4 3 pm4.71i
 |-  ( A e. B <-> ( A e. B /\ E. x x = A ) )
5 19.42v
 |-  ( E. x ( A e. B /\ x = A ) <-> ( A e. B /\ E. x x = A ) )
6 eleq1
 |-  ( A = x -> ( A e. B <-> x e. B ) )
7 6 eqcoms
 |-  ( x = A -> ( A e. B <-> x e. B ) )
8 7 pm5.32ri
 |-  ( ( A e. B /\ x = A ) <-> ( x e. B /\ x = A ) )
9 8 exbii
 |-  ( E. x ( A e. B /\ x = A ) <-> E. x ( x e. B /\ x = A ) )
10 4 5 9 3bitr2i
 |-  ( A e. B <-> E. x ( x e. B /\ x = A ) )
11 sneqbg
 |-  ( x e. _V -> ( { x } = { A } <-> x = A ) )
12 11 elv
 |-  ( { x } = { A } <-> x = A )
13 eqcom
 |-  ( { x } = { A } <-> { A } = { x } )
14 12 13 bitr3i
 |-  ( x = A <-> { A } = { x } )
15 14 anbi2i
 |-  ( ( x e. B /\ x = A ) <-> ( x e. B /\ { A } = { x } ) )
16 15 exbii
 |-  ( E. x ( x e. B /\ x = A ) <-> E. x ( x e. B /\ { A } = { x } ) )
17 10 16 bitri
 |-  ( A e. B <-> E. x ( x e. B /\ { A } = { x } ) )
18 1 2 17 3bitr4ri
 |-  ( A e. B <-> { A } e. sngl B )