Metamath Proof Explorer


Theorem bj-snglss

Description: The singletonization of a class is included in its powerclass. (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion bj-snglss
|- sngl A C_ ~P A

Proof

Step Hyp Ref Expression
1 bj-elsngl
 |-  ( x e. sngl A <-> E. y e. A x = { y } )
2 df-rex
 |-  ( E. y e. A x = { y } <-> E. y ( y e. A /\ x = { y } ) )
3 snssi
 |-  ( y e. A -> { y } C_ A )
4 sseq1
 |-  ( x = { y } -> ( x C_ A <-> { y } C_ A ) )
5 4 biimparc
 |-  ( ( { y } C_ A /\ x = { y } ) -> x C_ A )
6 3 5 sylan
 |-  ( ( y e. A /\ x = { y } ) -> x C_ A )
7 6 eximi
 |-  ( E. y ( y e. A /\ x = { y } ) -> E. y x C_ A )
8 2 7 sylbi
 |-  ( E. y e. A x = { y } -> E. y x C_ A )
9 1 8 sylbi
 |-  ( x e. sngl A -> E. y x C_ A )
10 ax5e
 |-  ( E. y x C_ A -> x C_ A )
11 9 10 syl
 |-  ( x e. sngl A -> x C_ A )
12 velpw
 |-  ( x e. ~P A <-> x C_ A )
13 11 12 sylibr
 |-  ( x e. sngl A -> x e. ~P A )
14 13 ssriv
 |-  sngl A C_ ~P A