Metamath Proof Explorer


Theorem bj-0nelsngl

Description: The empty set is not a member of a singletonization (neither is any nonsingleton, in particular any von Neuman ordinal except possibly df-1o ). (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion bj-0nelsngl
|- (/) e/ sngl A

Proof

Step Hyp Ref Expression
1 vex
 |-  x e. _V
2 1 snnz
 |-  { x } =/= (/)
3 2 nesymi
 |-  -. (/) = { x }
4 3 nex
 |-  -. E. x (/) = { x }
5 bj-elsngl
 |-  ( (/) e. sngl A <-> E. x e. A (/) = { x } )
6 rexex
 |-  ( E. x e. A (/) = { x } -> E. x (/) = { x } )
7 5 6 sylbi
 |-  ( (/) e. sngl A -> E. x (/) = { x } )
8 4 7 mto
 |-  -. (/) e. sngl A
9 8 nelir
 |-  (/) e/ sngl A