Metamath Proof Explorer


Theorem bj-0nelsngl

Description: The empty set is not a member of a singletonization (neither is any nonsingleton, in particular any von Neuman ordinal except possibly df-1o ). (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion bj-0nelsngl ∅ ∉ sngl 𝐴

Proof

Step Hyp Ref Expression
1 vex 𝑥 ∈ V
2 1 snnz { 𝑥 } ≠ ∅
3 2 nesymi ¬ ∅ = { 𝑥 }
4 3 nex ¬ ∃ 𝑥 ∅ = { 𝑥 }
5 bj-elsngl ( ∅ ∈ sngl 𝐴 ↔ ∃ 𝑥𝐴 ∅ = { 𝑥 } )
6 rexex ( ∃ 𝑥𝐴 ∅ = { 𝑥 } → ∃ 𝑥 ∅ = { 𝑥 } )
7 5 6 sylbi ( ∅ ∈ sngl 𝐴 → ∃ 𝑥 ∅ = { 𝑥 } )
8 4 7 mto ¬ ∅ ∈ sngl 𝐴
9 8 nelir ∅ ∉ sngl 𝐴