Step |
Hyp |
Ref |
Expression |
1 |
|
dfclel |
⊢ ( 𝐴 ∈ sngl 𝐵 ↔ ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 ∈ sngl 𝐵 ) ) |
2 |
|
df-bj-sngl |
⊢ sngl 𝐵 = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = { 𝑥 } } |
3 |
2
|
abeq2i |
⊢ ( 𝑦 ∈ sngl 𝐵 ↔ ∃ 𝑥 ∈ 𝐵 𝑦 = { 𝑥 } ) |
4 |
3
|
anbi2i |
⊢ ( ( 𝑦 = 𝐴 ∧ 𝑦 ∈ sngl 𝐵 ) ↔ ( 𝑦 = 𝐴 ∧ ∃ 𝑥 ∈ 𝐵 𝑦 = { 𝑥 } ) ) |
5 |
4
|
exbii |
⊢ ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 ∈ sngl 𝐵 ) ↔ ∃ 𝑦 ( 𝑦 = 𝐴 ∧ ∃ 𝑥 ∈ 𝐵 𝑦 = { 𝑥 } ) ) |
6 |
|
r19.42v |
⊢ ( ∃ 𝑥 ∈ 𝐵 ( 𝑦 = 𝐴 ∧ 𝑦 = { 𝑥 } ) ↔ ( 𝑦 = 𝐴 ∧ ∃ 𝑥 ∈ 𝐵 𝑦 = { 𝑥 } ) ) |
7 |
6
|
bicomi |
⊢ ( ( 𝑦 = 𝐴 ∧ ∃ 𝑥 ∈ 𝐵 𝑦 = { 𝑥 } ) ↔ ∃ 𝑥 ∈ 𝐵 ( 𝑦 = 𝐴 ∧ 𝑦 = { 𝑥 } ) ) |
8 |
7
|
exbii |
⊢ ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ ∃ 𝑥 ∈ 𝐵 𝑦 = { 𝑥 } ) ↔ ∃ 𝑦 ∃ 𝑥 ∈ 𝐵 ( 𝑦 = 𝐴 ∧ 𝑦 = { 𝑥 } ) ) |
9 |
|
rexcom4 |
⊢ ( ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 = { 𝑥 } ) ↔ ∃ 𝑦 ∃ 𝑥 ∈ 𝐵 ( 𝑦 = 𝐴 ∧ 𝑦 = { 𝑥 } ) ) |
10 |
9
|
bicomi |
⊢ ( ∃ 𝑦 ∃ 𝑥 ∈ 𝐵 ( 𝑦 = 𝐴 ∧ 𝑦 = { 𝑥 } ) ↔ ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 = { 𝑥 } ) ) |
11 |
|
eqcom |
⊢ ( 𝐴 = { 𝑥 } ↔ { 𝑥 } = 𝐴 ) |
12 |
|
snex |
⊢ { 𝑥 } ∈ V |
13 |
12
|
eqvinc |
⊢ ( { 𝑥 } = 𝐴 ↔ ∃ 𝑦 ( 𝑦 = { 𝑥 } ∧ 𝑦 = 𝐴 ) ) |
14 |
|
exancom |
⊢ ( ∃ 𝑦 ( 𝑦 = { 𝑥 } ∧ 𝑦 = 𝐴 ) ↔ ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 = { 𝑥 } ) ) |
15 |
11 13 14
|
3bitri |
⊢ ( 𝐴 = { 𝑥 } ↔ ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 = { 𝑥 } ) ) |
16 |
15
|
bicomi |
⊢ ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 = { 𝑥 } ) ↔ 𝐴 = { 𝑥 } ) |
17 |
16
|
rexbii |
⊢ ( ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 = { 𝑥 } ) ↔ ∃ 𝑥 ∈ 𝐵 𝐴 = { 𝑥 } ) |
18 |
8 10 17
|
3bitri |
⊢ ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ ∃ 𝑥 ∈ 𝐵 𝑦 = { 𝑥 } ) ↔ ∃ 𝑥 ∈ 𝐵 𝐴 = { 𝑥 } ) |
19 |
1 5 18
|
3bitri |
⊢ ( 𝐴 ∈ sngl 𝐵 ↔ ∃ 𝑥 ∈ 𝐵 𝐴 = { 𝑥 } ) |