Metamath Proof Explorer


Theorem bj-elsngl

Description: Characterization of the elements of the singletonization of a class. (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion bj-elsngl ( 𝐴 ∈ sngl 𝐵 ↔ ∃ 𝑥𝐵 𝐴 = { 𝑥 } )

Proof

Step Hyp Ref Expression
1 dfclel ( 𝐴 ∈ sngl 𝐵 ↔ ∃ 𝑦 ( 𝑦 = 𝐴𝑦 ∈ sngl 𝐵 ) )
2 df-bj-sngl sngl 𝐵 = { 𝑦 ∣ ∃ 𝑥𝐵 𝑦 = { 𝑥 } }
3 2 abeq2i ( 𝑦 ∈ sngl 𝐵 ↔ ∃ 𝑥𝐵 𝑦 = { 𝑥 } )
4 3 anbi2i ( ( 𝑦 = 𝐴𝑦 ∈ sngl 𝐵 ) ↔ ( 𝑦 = 𝐴 ∧ ∃ 𝑥𝐵 𝑦 = { 𝑥 } ) )
5 4 exbii ( ∃ 𝑦 ( 𝑦 = 𝐴𝑦 ∈ sngl 𝐵 ) ↔ ∃ 𝑦 ( 𝑦 = 𝐴 ∧ ∃ 𝑥𝐵 𝑦 = { 𝑥 } ) )
6 r19.42v ( ∃ 𝑥𝐵 ( 𝑦 = 𝐴𝑦 = { 𝑥 } ) ↔ ( 𝑦 = 𝐴 ∧ ∃ 𝑥𝐵 𝑦 = { 𝑥 } ) )
7 6 bicomi ( ( 𝑦 = 𝐴 ∧ ∃ 𝑥𝐵 𝑦 = { 𝑥 } ) ↔ ∃ 𝑥𝐵 ( 𝑦 = 𝐴𝑦 = { 𝑥 } ) )
8 7 exbii ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ ∃ 𝑥𝐵 𝑦 = { 𝑥 } ) ↔ ∃ 𝑦𝑥𝐵 ( 𝑦 = 𝐴𝑦 = { 𝑥 } ) )
9 rexcom4 ( ∃ 𝑥𝐵𝑦 ( 𝑦 = 𝐴𝑦 = { 𝑥 } ) ↔ ∃ 𝑦𝑥𝐵 ( 𝑦 = 𝐴𝑦 = { 𝑥 } ) )
10 9 bicomi ( ∃ 𝑦𝑥𝐵 ( 𝑦 = 𝐴𝑦 = { 𝑥 } ) ↔ ∃ 𝑥𝐵𝑦 ( 𝑦 = 𝐴𝑦 = { 𝑥 } ) )
11 eqcom ( 𝐴 = { 𝑥 } ↔ { 𝑥 } = 𝐴 )
12 snex { 𝑥 } ∈ V
13 12 eqvinc ( { 𝑥 } = 𝐴 ↔ ∃ 𝑦 ( 𝑦 = { 𝑥 } ∧ 𝑦 = 𝐴 ) )
14 exancom ( ∃ 𝑦 ( 𝑦 = { 𝑥 } ∧ 𝑦 = 𝐴 ) ↔ ∃ 𝑦 ( 𝑦 = 𝐴𝑦 = { 𝑥 } ) )
15 11 13 14 3bitri ( 𝐴 = { 𝑥 } ↔ ∃ 𝑦 ( 𝑦 = 𝐴𝑦 = { 𝑥 } ) )
16 15 bicomi ( ∃ 𝑦 ( 𝑦 = 𝐴𝑦 = { 𝑥 } ) ↔ 𝐴 = { 𝑥 } )
17 16 rexbii ( ∃ 𝑥𝐵𝑦 ( 𝑦 = 𝐴𝑦 = { 𝑥 } ) ↔ ∃ 𝑥𝐵 𝐴 = { 𝑥 } )
18 8 10 17 3bitri ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ ∃ 𝑥𝐵 𝑦 = { 𝑥 } ) ↔ ∃ 𝑥𝐵 𝐴 = { 𝑥 } )
19 1 5 18 3bitri ( 𝐴 ∈ sngl 𝐵 ↔ ∃ 𝑥𝐵 𝐴 = { 𝑥 } )