| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfclel | ⊢ ( 𝐴  ∈  sngl  𝐵  ↔  ∃ 𝑦 ( 𝑦  =  𝐴  ∧  𝑦  ∈  sngl  𝐵 ) ) | 
						
							| 2 |  | df-bj-sngl | ⊢ sngl  𝐵  =  { 𝑦  ∣  ∃ 𝑥  ∈  𝐵 𝑦  =  { 𝑥 } } | 
						
							| 3 | 2 | eqabri | ⊢ ( 𝑦  ∈  sngl  𝐵  ↔  ∃ 𝑥  ∈  𝐵 𝑦  =  { 𝑥 } ) | 
						
							| 4 | 3 | anbi2i | ⊢ ( ( 𝑦  =  𝐴  ∧  𝑦  ∈  sngl  𝐵 )  ↔  ( 𝑦  =  𝐴  ∧  ∃ 𝑥  ∈  𝐵 𝑦  =  { 𝑥 } ) ) | 
						
							| 5 | 4 | exbii | ⊢ ( ∃ 𝑦 ( 𝑦  =  𝐴  ∧  𝑦  ∈  sngl  𝐵 )  ↔  ∃ 𝑦 ( 𝑦  =  𝐴  ∧  ∃ 𝑥  ∈  𝐵 𝑦  =  { 𝑥 } ) ) | 
						
							| 6 |  | r19.42v | ⊢ ( ∃ 𝑥  ∈  𝐵 ( 𝑦  =  𝐴  ∧  𝑦  =  { 𝑥 } )  ↔  ( 𝑦  =  𝐴  ∧  ∃ 𝑥  ∈  𝐵 𝑦  =  { 𝑥 } ) ) | 
						
							| 7 | 6 | bicomi | ⊢ ( ( 𝑦  =  𝐴  ∧  ∃ 𝑥  ∈  𝐵 𝑦  =  { 𝑥 } )  ↔  ∃ 𝑥  ∈  𝐵 ( 𝑦  =  𝐴  ∧  𝑦  =  { 𝑥 } ) ) | 
						
							| 8 | 7 | exbii | ⊢ ( ∃ 𝑦 ( 𝑦  =  𝐴  ∧  ∃ 𝑥  ∈  𝐵 𝑦  =  { 𝑥 } )  ↔  ∃ 𝑦 ∃ 𝑥  ∈  𝐵 ( 𝑦  =  𝐴  ∧  𝑦  =  { 𝑥 } ) ) | 
						
							| 9 |  | rexcom4 | ⊢ ( ∃ 𝑥  ∈  𝐵 ∃ 𝑦 ( 𝑦  =  𝐴  ∧  𝑦  =  { 𝑥 } )  ↔  ∃ 𝑦 ∃ 𝑥  ∈  𝐵 ( 𝑦  =  𝐴  ∧  𝑦  =  { 𝑥 } ) ) | 
						
							| 10 | 9 | bicomi | ⊢ ( ∃ 𝑦 ∃ 𝑥  ∈  𝐵 ( 𝑦  =  𝐴  ∧  𝑦  =  { 𝑥 } )  ↔  ∃ 𝑥  ∈  𝐵 ∃ 𝑦 ( 𝑦  =  𝐴  ∧  𝑦  =  { 𝑥 } ) ) | 
						
							| 11 |  | eqcom | ⊢ ( 𝐴  =  { 𝑥 }  ↔  { 𝑥 }  =  𝐴 ) | 
						
							| 12 |  | vsnex | ⊢ { 𝑥 }  ∈  V | 
						
							| 13 | 12 | eqvinc | ⊢ ( { 𝑥 }  =  𝐴  ↔  ∃ 𝑦 ( 𝑦  =  { 𝑥 }  ∧  𝑦  =  𝐴 ) ) | 
						
							| 14 |  | exancom | ⊢ ( ∃ 𝑦 ( 𝑦  =  { 𝑥 }  ∧  𝑦  =  𝐴 )  ↔  ∃ 𝑦 ( 𝑦  =  𝐴  ∧  𝑦  =  { 𝑥 } ) ) | 
						
							| 15 | 11 13 14 | 3bitri | ⊢ ( 𝐴  =  { 𝑥 }  ↔  ∃ 𝑦 ( 𝑦  =  𝐴  ∧  𝑦  =  { 𝑥 } ) ) | 
						
							| 16 | 15 | bicomi | ⊢ ( ∃ 𝑦 ( 𝑦  =  𝐴  ∧  𝑦  =  { 𝑥 } )  ↔  𝐴  =  { 𝑥 } ) | 
						
							| 17 | 16 | rexbii | ⊢ ( ∃ 𝑥  ∈  𝐵 ∃ 𝑦 ( 𝑦  =  𝐴  ∧  𝑦  =  { 𝑥 } )  ↔  ∃ 𝑥  ∈  𝐵 𝐴  =  { 𝑥 } ) | 
						
							| 18 | 8 10 17 | 3bitri | ⊢ ( ∃ 𝑦 ( 𝑦  =  𝐴  ∧  ∃ 𝑥  ∈  𝐵 𝑦  =  { 𝑥 } )  ↔  ∃ 𝑥  ∈  𝐵 𝐴  =  { 𝑥 } ) | 
						
							| 19 | 1 5 18 | 3bitri | ⊢ ( 𝐴  ∈  sngl  𝐵  ↔  ∃ 𝑥  ∈  𝐵 𝐴  =  { 𝑥 } ) |