| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfclel |
⊢ ( 𝐴 ∈ sngl 𝐵 ↔ ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 ∈ sngl 𝐵 ) ) |
| 2 |
|
df-bj-sngl |
⊢ sngl 𝐵 = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = { 𝑥 } } |
| 3 |
2
|
eqabri |
⊢ ( 𝑦 ∈ sngl 𝐵 ↔ ∃ 𝑥 ∈ 𝐵 𝑦 = { 𝑥 } ) |
| 4 |
3
|
anbi2i |
⊢ ( ( 𝑦 = 𝐴 ∧ 𝑦 ∈ sngl 𝐵 ) ↔ ( 𝑦 = 𝐴 ∧ ∃ 𝑥 ∈ 𝐵 𝑦 = { 𝑥 } ) ) |
| 5 |
4
|
exbii |
⊢ ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 ∈ sngl 𝐵 ) ↔ ∃ 𝑦 ( 𝑦 = 𝐴 ∧ ∃ 𝑥 ∈ 𝐵 𝑦 = { 𝑥 } ) ) |
| 6 |
|
r19.42v |
⊢ ( ∃ 𝑥 ∈ 𝐵 ( 𝑦 = 𝐴 ∧ 𝑦 = { 𝑥 } ) ↔ ( 𝑦 = 𝐴 ∧ ∃ 𝑥 ∈ 𝐵 𝑦 = { 𝑥 } ) ) |
| 7 |
6
|
bicomi |
⊢ ( ( 𝑦 = 𝐴 ∧ ∃ 𝑥 ∈ 𝐵 𝑦 = { 𝑥 } ) ↔ ∃ 𝑥 ∈ 𝐵 ( 𝑦 = 𝐴 ∧ 𝑦 = { 𝑥 } ) ) |
| 8 |
7
|
exbii |
⊢ ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ ∃ 𝑥 ∈ 𝐵 𝑦 = { 𝑥 } ) ↔ ∃ 𝑦 ∃ 𝑥 ∈ 𝐵 ( 𝑦 = 𝐴 ∧ 𝑦 = { 𝑥 } ) ) |
| 9 |
|
rexcom4 |
⊢ ( ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 = { 𝑥 } ) ↔ ∃ 𝑦 ∃ 𝑥 ∈ 𝐵 ( 𝑦 = 𝐴 ∧ 𝑦 = { 𝑥 } ) ) |
| 10 |
9
|
bicomi |
⊢ ( ∃ 𝑦 ∃ 𝑥 ∈ 𝐵 ( 𝑦 = 𝐴 ∧ 𝑦 = { 𝑥 } ) ↔ ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 = { 𝑥 } ) ) |
| 11 |
|
eqcom |
⊢ ( 𝐴 = { 𝑥 } ↔ { 𝑥 } = 𝐴 ) |
| 12 |
|
vsnex |
⊢ { 𝑥 } ∈ V |
| 13 |
12
|
eqvinc |
⊢ ( { 𝑥 } = 𝐴 ↔ ∃ 𝑦 ( 𝑦 = { 𝑥 } ∧ 𝑦 = 𝐴 ) ) |
| 14 |
|
exancom |
⊢ ( ∃ 𝑦 ( 𝑦 = { 𝑥 } ∧ 𝑦 = 𝐴 ) ↔ ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 = { 𝑥 } ) ) |
| 15 |
11 13 14
|
3bitri |
⊢ ( 𝐴 = { 𝑥 } ↔ ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 = { 𝑥 } ) ) |
| 16 |
15
|
bicomi |
⊢ ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 = { 𝑥 } ) ↔ 𝐴 = { 𝑥 } ) |
| 17 |
16
|
rexbii |
⊢ ( ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 = { 𝑥 } ) ↔ ∃ 𝑥 ∈ 𝐵 𝐴 = { 𝑥 } ) |
| 18 |
8 10 17
|
3bitri |
⊢ ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ ∃ 𝑥 ∈ 𝐵 𝑦 = { 𝑥 } ) ↔ ∃ 𝑥 ∈ 𝐵 𝐴 = { 𝑥 } ) |
| 19 |
1 5 18
|
3bitri |
⊢ ( 𝐴 ∈ sngl 𝐵 ↔ ∃ 𝑥 ∈ 𝐵 𝐴 = { 𝑥 } ) |