Metamath Proof Explorer


Definition df-bj-sngl

Description: Definition of "singletonization". The class sngl A is isomorphic to A and since it contains only singletons, it can be easily be adjoined disjoint elements, which can be useful in various constructions. (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion df-bj-sngl sngl 𝐴 = { 𝑥 ∣ ∃ 𝑦𝐴 𝑥 = { 𝑦 } }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA 𝐴
1 0 bj-csngl sngl 𝐴
2 vx 𝑥
3 vy 𝑦
4 2 cv 𝑥
5 3 cv 𝑦
6 5 csn { 𝑦 }
7 4 6 wceq 𝑥 = { 𝑦 }
8 7 3 0 wrex 𝑦𝐴 𝑥 = { 𝑦 }
9 8 2 cab { 𝑥 ∣ ∃ 𝑦𝐴 𝑥 = { 𝑦 } }
10 1 9 wceq sngl 𝐴 = { 𝑥 ∣ ∃ 𝑦𝐴 𝑥 = { 𝑦 } }