Metamath Proof Explorer


Definition df-bj-sngl

Description: Definition of "singletonization". The class sngl A is isomorphic to A and since it contains only singletons, it can be easily be adjoined disjoint elements, which can be useful in various constructions. (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion df-bj-sngl
|- sngl A = { x | E. y e. A x = { y } }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA
 |-  A
1 0 bj-csngl
 |-  sngl A
2 vx
 |-  x
3 vy
 |-  y
4 2 cv
 |-  x
5 3 cv
 |-  y
6 5 csn
 |-  { y }
7 4 6 wceq
 |-  x = { y }
8 7 3 0 wrex
 |-  E. y e. A x = { y }
9 8 2 cab
 |-  { x | E. y e. A x = { y } }
10 1 9 wceq
 |-  sngl A = { x | E. y e. A x = { y } }