Metamath Proof Explorer


Theorem bj-sngleq

Description: Substitution property for sngl . (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion bj-sngleq
|- ( A = B -> sngl A = sngl B )

Proof

Step Hyp Ref Expression
1 rexeq
 |-  ( A = B -> ( E. y e. A x = { y } <-> E. y e. B x = { y } ) )
2 1 abbidv
 |-  ( A = B -> { x | E. y e. A x = { y } } = { x | E. y e. B x = { y } } )
3 df-bj-sngl
 |-  sngl A = { x | E. y e. A x = { y } }
4 df-bj-sngl
 |-  sngl B = { x | E. y e. B x = { y } }
5 2 3 4 3eqtr4g
 |-  ( A = B -> sngl A = sngl B )