Description: Substitution property for sngl . (Contributed by BJ, 6-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-sngleq | ⊢ ( 𝐴 = 𝐵 → sngl 𝐴 = sngl 𝐵 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rexeq | ⊢ ( 𝐴 = 𝐵 → ( ∃ 𝑦 ∈ 𝐴 𝑥 = { 𝑦 } ↔ ∃ 𝑦 ∈ 𝐵 𝑥 = { 𝑦 } ) ) | |
| 2 | 1 | abbidv | ⊢ ( 𝐴 = 𝐵 → { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 = { 𝑦 } } = { 𝑥 ∣ ∃ 𝑦 ∈ 𝐵 𝑥 = { 𝑦 } } ) | 
| 3 | df-bj-sngl | ⊢ sngl 𝐴 = { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 = { 𝑦 } } | |
| 4 | df-bj-sngl | ⊢ sngl 𝐵 = { 𝑥 ∣ ∃ 𝑦 ∈ 𝐵 𝑥 = { 𝑦 } } | |
| 5 | 2 3 4 | 3eqtr4g | ⊢ ( 𝐴 = 𝐵 → sngl 𝐴 = sngl 𝐵 ) |