Description: Substitution property for sngl . (Contributed by BJ, 6-Oct-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-sngleq | ⊢ ( 𝐴 = 𝐵 → sngl 𝐴 = sngl 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexeq | ⊢ ( 𝐴 = 𝐵 → ( ∃ 𝑦 ∈ 𝐴 𝑥 = { 𝑦 } ↔ ∃ 𝑦 ∈ 𝐵 𝑥 = { 𝑦 } ) ) | |
2 | 1 | abbidv | ⊢ ( 𝐴 = 𝐵 → { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 = { 𝑦 } } = { 𝑥 ∣ ∃ 𝑦 ∈ 𝐵 𝑥 = { 𝑦 } } ) |
3 | df-bj-sngl | ⊢ sngl 𝐴 = { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 𝑥 = { 𝑦 } } | |
4 | df-bj-sngl | ⊢ sngl 𝐵 = { 𝑥 ∣ ∃ 𝑦 ∈ 𝐵 𝑥 = { 𝑦 } } | |
5 | 2 3 4 | 3eqtr4g | ⊢ ( 𝐴 = 𝐵 → sngl 𝐴 = sngl 𝐵 ) |