| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-rex | ⊢ ( ∃ 𝑥  ∈  𝐵 { 𝐴 }  =  { 𝑥 }  ↔  ∃ 𝑥 ( 𝑥  ∈  𝐵  ∧  { 𝐴 }  =  { 𝑥 } ) ) | 
						
							| 2 |  | bj-elsngl | ⊢ ( { 𝐴 }  ∈  sngl  𝐵  ↔  ∃ 𝑥  ∈  𝐵 { 𝐴 }  =  { 𝑥 } ) | 
						
							| 3 |  | elisset | ⊢ ( 𝐴  ∈  𝐵  →  ∃ 𝑥 𝑥  =  𝐴 ) | 
						
							| 4 | 3 | pm4.71i | ⊢ ( 𝐴  ∈  𝐵  ↔  ( 𝐴  ∈  𝐵  ∧  ∃ 𝑥 𝑥  =  𝐴 ) ) | 
						
							| 5 |  | 19.42v | ⊢ ( ∃ 𝑥 ( 𝐴  ∈  𝐵  ∧  𝑥  =  𝐴 )  ↔  ( 𝐴  ∈  𝐵  ∧  ∃ 𝑥 𝑥  =  𝐴 ) ) | 
						
							| 6 |  | eleq1 | ⊢ ( 𝐴  =  𝑥  →  ( 𝐴  ∈  𝐵  ↔  𝑥  ∈  𝐵 ) ) | 
						
							| 7 | 6 | eqcoms | ⊢ ( 𝑥  =  𝐴  →  ( 𝐴  ∈  𝐵  ↔  𝑥  ∈  𝐵 ) ) | 
						
							| 8 | 7 | pm5.32ri | ⊢ ( ( 𝐴  ∈  𝐵  ∧  𝑥  =  𝐴 )  ↔  ( 𝑥  ∈  𝐵  ∧  𝑥  =  𝐴 ) ) | 
						
							| 9 | 8 | exbii | ⊢ ( ∃ 𝑥 ( 𝐴  ∈  𝐵  ∧  𝑥  =  𝐴 )  ↔  ∃ 𝑥 ( 𝑥  ∈  𝐵  ∧  𝑥  =  𝐴 ) ) | 
						
							| 10 | 4 5 9 | 3bitr2i | ⊢ ( 𝐴  ∈  𝐵  ↔  ∃ 𝑥 ( 𝑥  ∈  𝐵  ∧  𝑥  =  𝐴 ) ) | 
						
							| 11 |  | sneqbg | ⊢ ( 𝑥  ∈  V  →  ( { 𝑥 }  =  { 𝐴 }  ↔  𝑥  =  𝐴 ) ) | 
						
							| 12 | 11 | elv | ⊢ ( { 𝑥 }  =  { 𝐴 }  ↔  𝑥  =  𝐴 ) | 
						
							| 13 |  | eqcom | ⊢ ( { 𝑥 }  =  { 𝐴 }  ↔  { 𝐴 }  =  { 𝑥 } ) | 
						
							| 14 | 12 13 | bitr3i | ⊢ ( 𝑥  =  𝐴  ↔  { 𝐴 }  =  { 𝑥 } ) | 
						
							| 15 | 14 | anbi2i | ⊢ ( ( 𝑥  ∈  𝐵  ∧  𝑥  =  𝐴 )  ↔  ( 𝑥  ∈  𝐵  ∧  { 𝐴 }  =  { 𝑥 } ) ) | 
						
							| 16 | 15 | exbii | ⊢ ( ∃ 𝑥 ( 𝑥  ∈  𝐵  ∧  𝑥  =  𝐴 )  ↔  ∃ 𝑥 ( 𝑥  ∈  𝐵  ∧  { 𝐴 }  =  { 𝑥 } ) ) | 
						
							| 17 | 10 16 | bitri | ⊢ ( 𝐴  ∈  𝐵  ↔  ∃ 𝑥 ( 𝑥  ∈  𝐵  ∧  { 𝐴 }  =  { 𝑥 } ) ) | 
						
							| 18 | 1 2 17 | 3bitr4ri | ⊢ ( 𝐴  ∈  𝐵  ↔  { 𝐴 }  ∈  sngl  𝐵 ) |