Step |
Hyp |
Ref |
Expression |
1 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝐵 { 𝐴 } = { 𝑥 } ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ { 𝐴 } = { 𝑥 } ) ) |
2 |
|
bj-elsngl |
⊢ ( { 𝐴 } ∈ sngl 𝐵 ↔ ∃ 𝑥 ∈ 𝐵 { 𝐴 } = { 𝑥 } ) |
3 |
|
elisset |
⊢ ( 𝐴 ∈ 𝐵 → ∃ 𝑥 𝑥 = 𝐴 ) |
4 |
3
|
pm4.71i |
⊢ ( 𝐴 ∈ 𝐵 ↔ ( 𝐴 ∈ 𝐵 ∧ ∃ 𝑥 𝑥 = 𝐴 ) ) |
5 |
|
19.42v |
⊢ ( ∃ 𝑥 ( 𝐴 ∈ 𝐵 ∧ 𝑥 = 𝐴 ) ↔ ( 𝐴 ∈ 𝐵 ∧ ∃ 𝑥 𝑥 = 𝐴 ) ) |
6 |
|
eleq1 |
⊢ ( 𝐴 = 𝑥 → ( 𝐴 ∈ 𝐵 ↔ 𝑥 ∈ 𝐵 ) ) |
7 |
6
|
eqcoms |
⊢ ( 𝑥 = 𝐴 → ( 𝐴 ∈ 𝐵 ↔ 𝑥 ∈ 𝐵 ) ) |
8 |
7
|
pm5.32ri |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝑥 = 𝐴 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴 ) ) |
9 |
8
|
exbii |
⊢ ( ∃ 𝑥 ( 𝐴 ∈ 𝐵 ∧ 𝑥 = 𝐴 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴 ) ) |
10 |
4 5 9
|
3bitr2i |
⊢ ( 𝐴 ∈ 𝐵 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴 ) ) |
11 |
|
sneqbg |
⊢ ( 𝑥 ∈ V → ( { 𝑥 } = { 𝐴 } ↔ 𝑥 = 𝐴 ) ) |
12 |
11
|
elv |
⊢ ( { 𝑥 } = { 𝐴 } ↔ 𝑥 = 𝐴 ) |
13 |
|
eqcom |
⊢ ( { 𝑥 } = { 𝐴 } ↔ { 𝐴 } = { 𝑥 } ) |
14 |
12 13
|
bitr3i |
⊢ ( 𝑥 = 𝐴 ↔ { 𝐴 } = { 𝑥 } ) |
15 |
14
|
anbi2i |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴 ) ↔ ( 𝑥 ∈ 𝐵 ∧ { 𝐴 } = { 𝑥 } ) ) |
16 |
15
|
exbii |
⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ { 𝐴 } = { 𝑥 } ) ) |
17 |
10 16
|
bitri |
⊢ ( 𝐴 ∈ 𝐵 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ { 𝐴 } = { 𝑥 } ) ) |
18 |
1 2 17
|
3bitr4ri |
⊢ ( 𝐴 ∈ 𝐵 ↔ { 𝐴 } ∈ sngl 𝐵 ) |