Metamath Proof Explorer


Theorem bj-snglc

Description: Characterization of the elements of A in terms of elements of its singletonization. (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion bj-snglc ( 𝐴𝐵 ↔ { 𝐴 } ∈ sngl 𝐵 )

Proof

Step Hyp Ref Expression
1 df-rex ( ∃ 𝑥𝐵 { 𝐴 } = { 𝑥 } ↔ ∃ 𝑥 ( 𝑥𝐵 ∧ { 𝐴 } = { 𝑥 } ) )
2 bj-elsngl ( { 𝐴 } ∈ sngl 𝐵 ↔ ∃ 𝑥𝐵 { 𝐴 } = { 𝑥 } )
3 elisset ( 𝐴𝐵 → ∃ 𝑥 𝑥 = 𝐴 )
4 3 pm4.71i ( 𝐴𝐵 ↔ ( 𝐴𝐵 ∧ ∃ 𝑥 𝑥 = 𝐴 ) )
5 19.42v ( ∃ 𝑥 ( 𝐴𝐵𝑥 = 𝐴 ) ↔ ( 𝐴𝐵 ∧ ∃ 𝑥 𝑥 = 𝐴 ) )
6 eleq1 ( 𝐴 = 𝑥 → ( 𝐴𝐵𝑥𝐵 ) )
7 6 eqcoms ( 𝑥 = 𝐴 → ( 𝐴𝐵𝑥𝐵 ) )
8 7 pm5.32ri ( ( 𝐴𝐵𝑥 = 𝐴 ) ↔ ( 𝑥𝐵𝑥 = 𝐴 ) )
9 8 exbii ( ∃ 𝑥 ( 𝐴𝐵𝑥 = 𝐴 ) ↔ ∃ 𝑥 ( 𝑥𝐵𝑥 = 𝐴 ) )
10 4 5 9 3bitr2i ( 𝐴𝐵 ↔ ∃ 𝑥 ( 𝑥𝐵𝑥 = 𝐴 ) )
11 sneqbg ( 𝑥 ∈ V → ( { 𝑥 } = { 𝐴 } ↔ 𝑥 = 𝐴 ) )
12 11 elv ( { 𝑥 } = { 𝐴 } ↔ 𝑥 = 𝐴 )
13 eqcom ( { 𝑥 } = { 𝐴 } ↔ { 𝐴 } = { 𝑥 } )
14 12 13 bitr3i ( 𝑥 = 𝐴 ↔ { 𝐴 } = { 𝑥 } )
15 14 anbi2i ( ( 𝑥𝐵𝑥 = 𝐴 ) ↔ ( 𝑥𝐵 ∧ { 𝐴 } = { 𝑥 } ) )
16 15 exbii ( ∃ 𝑥 ( 𝑥𝐵𝑥 = 𝐴 ) ↔ ∃ 𝑥 ( 𝑥𝐵 ∧ { 𝐴 } = { 𝑥 } ) )
17 10 16 bitri ( 𝐴𝐵 ↔ ∃ 𝑥 ( 𝑥𝐵 ∧ { 𝐴 } = { 𝑥 } ) )
18 1 2 17 3bitr4ri ( 𝐴𝐵 ↔ { 𝐴 } ∈ sngl 𝐵 )