| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝐵 { 𝐴 } = { 𝑥 } ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ { 𝐴 } = { 𝑥 } ) ) |
| 2 |
|
bj-elsngl |
⊢ ( { 𝐴 } ∈ sngl 𝐵 ↔ ∃ 𝑥 ∈ 𝐵 { 𝐴 } = { 𝑥 } ) |
| 3 |
|
elisset |
⊢ ( 𝐴 ∈ 𝐵 → ∃ 𝑥 𝑥 = 𝐴 ) |
| 4 |
3
|
pm4.71i |
⊢ ( 𝐴 ∈ 𝐵 ↔ ( 𝐴 ∈ 𝐵 ∧ ∃ 𝑥 𝑥 = 𝐴 ) ) |
| 5 |
|
19.42v |
⊢ ( ∃ 𝑥 ( 𝐴 ∈ 𝐵 ∧ 𝑥 = 𝐴 ) ↔ ( 𝐴 ∈ 𝐵 ∧ ∃ 𝑥 𝑥 = 𝐴 ) ) |
| 6 |
|
eleq1 |
⊢ ( 𝐴 = 𝑥 → ( 𝐴 ∈ 𝐵 ↔ 𝑥 ∈ 𝐵 ) ) |
| 7 |
6
|
eqcoms |
⊢ ( 𝑥 = 𝐴 → ( 𝐴 ∈ 𝐵 ↔ 𝑥 ∈ 𝐵 ) ) |
| 8 |
7
|
pm5.32ri |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝑥 = 𝐴 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴 ) ) |
| 9 |
8
|
exbii |
⊢ ( ∃ 𝑥 ( 𝐴 ∈ 𝐵 ∧ 𝑥 = 𝐴 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴 ) ) |
| 10 |
4 5 9
|
3bitr2i |
⊢ ( 𝐴 ∈ 𝐵 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴 ) ) |
| 11 |
|
sneqbg |
⊢ ( 𝑥 ∈ V → ( { 𝑥 } = { 𝐴 } ↔ 𝑥 = 𝐴 ) ) |
| 12 |
11
|
elv |
⊢ ( { 𝑥 } = { 𝐴 } ↔ 𝑥 = 𝐴 ) |
| 13 |
|
eqcom |
⊢ ( { 𝑥 } = { 𝐴 } ↔ { 𝐴 } = { 𝑥 } ) |
| 14 |
12 13
|
bitr3i |
⊢ ( 𝑥 = 𝐴 ↔ { 𝐴 } = { 𝑥 } ) |
| 15 |
14
|
anbi2i |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴 ) ↔ ( 𝑥 ∈ 𝐵 ∧ { 𝐴 } = { 𝑥 } ) ) |
| 16 |
15
|
exbii |
⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ { 𝐴 } = { 𝑥 } ) ) |
| 17 |
10 16
|
bitri |
⊢ ( 𝐴 ∈ 𝐵 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ { 𝐴 } = { 𝑥 } ) ) |
| 18 |
1 2 17
|
3bitr4ri |
⊢ ( 𝐴 ∈ 𝐵 ↔ { 𝐴 } ∈ sngl 𝐵 ) |