Description: Two singletons of sets are equal iff their elements are equal. (Contributed by Scott Fenton, 16-Apr-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sneqbg | ⊢ ( 𝐴 ∈ 𝑉 → ( { 𝐴 } = { 𝐵 } ↔ 𝐴 = 𝐵 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sneqrg | ⊢ ( 𝐴 ∈ 𝑉 → ( { 𝐴 } = { 𝐵 } → 𝐴 = 𝐵 ) ) | |
| 2 | sneq | ⊢ ( 𝐴 = 𝐵 → { 𝐴 } = { 𝐵 } ) | |
| 3 | 1 2 | impbid1 | ⊢ ( 𝐴 ∈ 𝑉 → ( { 𝐴 } = { 𝐵 } ↔ 𝐴 = 𝐵 ) ) |