Metamath Proof Explorer


Theorem sneqrg

Description: Closed form of sneqr . (Contributed by Scott Fenton, 1-Apr-2011) (Proof shortened by JJ, 23-Jul-2021)

Ref Expression
Assertion sneqrg ( 𝐴𝑉 → ( { 𝐴 } = { 𝐵 } → 𝐴 = 𝐵 ) )

Proof

Step Hyp Ref Expression
1 snidg ( 𝐴𝑉𝐴 ∈ { 𝐴 } )
2 eleq2 ( { 𝐴 } = { 𝐵 } → ( 𝐴 ∈ { 𝐴 } ↔ 𝐴 ∈ { 𝐵 } ) )
3 1 2 syl5ibcom ( 𝐴𝑉 → ( { 𝐴 } = { 𝐵 } → 𝐴 ∈ { 𝐵 } ) )
4 elsng ( 𝐴𝑉 → ( 𝐴 ∈ { 𝐵 } ↔ 𝐴 = 𝐵 ) )
5 3 4 sylibd ( 𝐴𝑉 → ( { 𝐴 } = { 𝐵 } → 𝐴 = 𝐵 ) )