Description: Closed form of sneqr . (Contributed by Scott Fenton, 1-Apr-2011) (Proof shortened by JJ, 23-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | sneqrg | ⊢ ( 𝐴 ∈ 𝑉 → ( { 𝐴 } = { 𝐵 } → 𝐴 = 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snidg | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ { 𝐴 } ) | |
2 | eleq2 | ⊢ ( { 𝐴 } = { 𝐵 } → ( 𝐴 ∈ { 𝐴 } ↔ 𝐴 ∈ { 𝐵 } ) ) | |
3 | 1 2 | syl5ibcom | ⊢ ( 𝐴 ∈ 𝑉 → ( { 𝐴 } = { 𝐵 } → 𝐴 ∈ { 𝐵 } ) ) |
4 | elsng | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ { 𝐵 } ↔ 𝐴 = 𝐵 ) ) | |
5 | 3 4 | sylibd | ⊢ ( 𝐴 ∈ 𝑉 → ( { 𝐴 } = { 𝐵 } → 𝐴 = 𝐵 ) ) |