Step |
Hyp |
Ref |
Expression |
1 |
|
bj-elsngl |
⊢ ( 𝑥 ∈ sngl 𝐴 ↔ ∃ 𝑦 ∈ 𝐴 𝑥 = { 𝑦 } ) |
2 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ 𝐴 𝑥 = { 𝑦 } ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑥 = { 𝑦 } ) ) |
3 |
|
snssi |
⊢ ( 𝑦 ∈ 𝐴 → { 𝑦 } ⊆ 𝐴 ) |
4 |
|
sseq1 |
⊢ ( 𝑥 = { 𝑦 } → ( 𝑥 ⊆ 𝐴 ↔ { 𝑦 } ⊆ 𝐴 ) ) |
5 |
4
|
biimparc |
⊢ ( ( { 𝑦 } ⊆ 𝐴 ∧ 𝑥 = { 𝑦 } ) → 𝑥 ⊆ 𝐴 ) |
6 |
3 5
|
sylan |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 = { 𝑦 } ) → 𝑥 ⊆ 𝐴 ) |
7 |
6
|
eximi |
⊢ ( ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝑥 = { 𝑦 } ) → ∃ 𝑦 𝑥 ⊆ 𝐴 ) |
8 |
2 7
|
sylbi |
⊢ ( ∃ 𝑦 ∈ 𝐴 𝑥 = { 𝑦 } → ∃ 𝑦 𝑥 ⊆ 𝐴 ) |
9 |
1 8
|
sylbi |
⊢ ( 𝑥 ∈ sngl 𝐴 → ∃ 𝑦 𝑥 ⊆ 𝐴 ) |
10 |
|
ax5e |
⊢ ( ∃ 𝑦 𝑥 ⊆ 𝐴 → 𝑥 ⊆ 𝐴 ) |
11 |
9 10
|
syl |
⊢ ( 𝑥 ∈ sngl 𝐴 → 𝑥 ⊆ 𝐴 ) |
12 |
|
velpw |
⊢ ( 𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴 ) |
13 |
11 12
|
sylibr |
⊢ ( 𝑥 ∈ sngl 𝐴 → 𝑥 ∈ 𝒫 𝐴 ) |
14 |
13
|
ssriv |
⊢ sngl 𝐴 ⊆ 𝒫 𝐴 |