Metamath Proof Explorer


Theorem bj-snglss

Description: The singletonization of a class is included in its powerclass. (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion bj-snglss sngl 𝐴 ⊆ 𝒫 𝐴

Proof

Step Hyp Ref Expression
1 bj-elsngl ( 𝑥 ∈ sngl 𝐴 ↔ ∃ 𝑦𝐴 𝑥 = { 𝑦 } )
2 df-rex ( ∃ 𝑦𝐴 𝑥 = { 𝑦 } ↔ ∃ 𝑦 ( 𝑦𝐴𝑥 = { 𝑦 } ) )
3 snssi ( 𝑦𝐴 → { 𝑦 } ⊆ 𝐴 )
4 sseq1 ( 𝑥 = { 𝑦 } → ( 𝑥𝐴 ↔ { 𝑦 } ⊆ 𝐴 ) )
5 4 biimparc ( ( { 𝑦 } ⊆ 𝐴𝑥 = { 𝑦 } ) → 𝑥𝐴 )
6 3 5 sylan ( ( 𝑦𝐴𝑥 = { 𝑦 } ) → 𝑥𝐴 )
7 6 eximi ( ∃ 𝑦 ( 𝑦𝐴𝑥 = { 𝑦 } ) → ∃ 𝑦 𝑥𝐴 )
8 2 7 sylbi ( ∃ 𝑦𝐴 𝑥 = { 𝑦 } → ∃ 𝑦 𝑥𝐴 )
9 1 8 sylbi ( 𝑥 ∈ sngl 𝐴 → ∃ 𝑦 𝑥𝐴 )
10 ax5e ( ∃ 𝑦 𝑥𝐴𝑥𝐴 )
11 9 10 syl ( 𝑥 ∈ sngl 𝐴𝑥𝐴 )
12 velpw ( 𝑥 ∈ 𝒫 𝐴𝑥𝐴 )
13 11 12 sylibr ( 𝑥 ∈ sngl 𝐴𝑥 ∈ 𝒫 𝐴 )
14 13 ssriv sngl 𝐴 ⊆ 𝒫 𝐴