| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bj-elsngl | ⊢ ( 𝑥  ∈  sngl  𝐴  ↔  ∃ 𝑦  ∈  𝐴 𝑥  =  { 𝑦 } ) | 
						
							| 2 |  | df-rex | ⊢ ( ∃ 𝑦  ∈  𝐴 𝑥  =  { 𝑦 }  ↔  ∃ 𝑦 ( 𝑦  ∈  𝐴  ∧  𝑥  =  { 𝑦 } ) ) | 
						
							| 3 |  | snssi | ⊢ ( 𝑦  ∈  𝐴  →  { 𝑦 }  ⊆  𝐴 ) | 
						
							| 4 |  | sseq1 | ⊢ ( 𝑥  =  { 𝑦 }  →  ( 𝑥  ⊆  𝐴  ↔  { 𝑦 }  ⊆  𝐴 ) ) | 
						
							| 5 | 4 | biimparc | ⊢ ( ( { 𝑦 }  ⊆  𝐴  ∧  𝑥  =  { 𝑦 } )  →  𝑥  ⊆  𝐴 ) | 
						
							| 6 | 3 5 | sylan | ⊢ ( ( 𝑦  ∈  𝐴  ∧  𝑥  =  { 𝑦 } )  →  𝑥  ⊆  𝐴 ) | 
						
							| 7 | 6 | eximi | ⊢ ( ∃ 𝑦 ( 𝑦  ∈  𝐴  ∧  𝑥  =  { 𝑦 } )  →  ∃ 𝑦 𝑥  ⊆  𝐴 ) | 
						
							| 8 | 2 7 | sylbi | ⊢ ( ∃ 𝑦  ∈  𝐴 𝑥  =  { 𝑦 }  →  ∃ 𝑦 𝑥  ⊆  𝐴 ) | 
						
							| 9 | 1 8 | sylbi | ⊢ ( 𝑥  ∈  sngl  𝐴  →  ∃ 𝑦 𝑥  ⊆  𝐴 ) | 
						
							| 10 |  | ax5e | ⊢ ( ∃ 𝑦 𝑥  ⊆  𝐴  →  𝑥  ⊆  𝐴 ) | 
						
							| 11 | 9 10 | syl | ⊢ ( 𝑥  ∈  sngl  𝐴  →  𝑥  ⊆  𝐴 ) | 
						
							| 12 |  | velpw | ⊢ ( 𝑥  ∈  𝒫  𝐴  ↔  𝑥  ⊆  𝐴 ) | 
						
							| 13 | 11 12 | sylibr | ⊢ ( 𝑥  ∈  sngl  𝐴  →  𝑥  ∈  𝒫  𝐴 ) | 
						
							| 14 | 13 | ssriv | ⊢ sngl  𝐴  ⊆  𝒫  𝐴 |