Metamath Proof Explorer


Theorem bj-elsngl

Description: Characterization of the elements of the singletonization of a class. (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion bj-elsngl AsnglBxBA=x

Proof

Step Hyp Ref Expression
1 dfclel AsnglByy=AysnglB
2 df-bj-sngl snglB=y|xBy=x
3 2 eqabri ysnglBxBy=x
4 3 anbi2i y=AysnglBy=AxBy=x
5 4 exbii yy=AysnglByy=AxBy=x
6 r19.42v xBy=Ay=xy=AxBy=x
7 6 bicomi y=AxBy=xxBy=Ay=x
8 7 exbii yy=AxBy=xyxBy=Ay=x
9 rexcom4 xByy=Ay=xyxBy=Ay=x
10 9 bicomi yxBy=Ay=xxByy=Ay=x
11 eqcom A=xx=A
12 vsnex xV
13 12 eqvinc x=Ayy=xy=A
14 exancom yy=xy=Ayy=Ay=x
15 11 13 14 3bitri A=xyy=Ay=x
16 15 bicomi yy=Ay=xA=x
17 16 rexbii xByy=Ay=xxBA=x
18 8 10 17 3bitri yy=AxBy=xxBA=x
19 1 5 18 3bitri AsnglBxBA=x