Metamath Proof Explorer


Theorem bj-snglex

Description: A class is a set if and only if its singletonization is a set. (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion bj-snglex A V sngl A V

Proof

Step Hyp Ref Expression
1 isset A V x x = A
2 pweq x = A 𝒫 x = 𝒫 A
3 2 eximi x x = A x 𝒫 x = 𝒫 A
4 bj-snglss sngl A 𝒫 A
5 sseq2 𝒫 x = 𝒫 A sngl A 𝒫 x sngl A 𝒫 A
6 4 5 mpbiri 𝒫 x = 𝒫 A sngl A 𝒫 x
7 6 eximi x 𝒫 x = 𝒫 A x sngl A 𝒫 x
8 vpwex 𝒫 x V
9 8 ssex sngl A 𝒫 x sngl A V
10 9 exlimiv x sngl A 𝒫 x sngl A V
11 3 7 10 3syl x x = A sngl A V
12 1 11 sylbi A V sngl A V
13 bj-snglinv A = y | y sngl A
14 bj-snsetex sngl A V y | y sngl A V
15 13 14 eqeltrid sngl A V A V
16 12 15 impbii A V sngl A V