Metamath Proof Explorer


Theorem bj-snsetex

Description: The class of sets "whose singletons" belong to a set is a set. Nice application of ax-rep . (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion bj-snsetex A V x | x A V

Proof

Step Hyp Ref Expression
1 elisset A V y y = A
2 eleq2 y = A x y x A
3 2 abbidv y = A x | x y = x | x A
4 eleq1 x | x y = x | x A x | x y V x | x A V
5 4 biimpd x | x y = x | x A x | x y V x | x A V
6 3 5 syl y = A x | x y V x | x A V
7 6 eximi y y = A y x | x y V x | x A V
8 bj-eximcom y x | x y V x | x A V y x | x y V y x | x A V
9 8 com12 y x | x y V y x | x y V x | x A V y x | x A V
10 ax-rep u z t z u = t t = z z t t z u u y z u = t
11 19.3v z u = t u = t
12 11 sbbii z t z u = t z t u = t
13 sbsbc z t u = t [˙z / t]˙ u = t
14 sbceq2g z V [˙z / t]˙ u = t u = z / t t
15 14 elv [˙z / t]˙ u = t u = z / t t
16 13 15 bitri z t u = t u = z / t t
17 bj-csbsn z / t t = z
18 17 eqeq2i u = z / t t u = z
19 16 18 bitri z t u = t u = z
20 eqtr2 u = t u = z t = z
21 vex t V
22 21 sneqr t = z t = z
23 20 22 syl u = t u = z t = z
24 19 23 sylan2b u = t z t u = t t = z
25 11 12 24 syl2anb z u = t z t z u = t t = z
26 25 gen2 t z z u = t z t z u = t t = z
27 nfa1 z z u = t
28 27 mo z t z u = t t = z t z z u = t z t z u = t t = z
29 26 28 mpbir z t z u = t t = z
30 10 29 mpg z t t z u u y z u = t
31 bj-sbel1 t x x y t / x x y
32 bj-csbsn t / x x = t
33 32 eleq1i t / x x y t y
34 31 33 bitri t x x y t y
35 df-clab t x | x y t x x y
36 11 anbi2i u y z u = t u y u = t
37 eleq1a u y t = u t y
38 37 com12 t = u u y t y
39 38 eqcoms u = t u y t y
40 39 imdistanri u y u = t t y u = t
41 eleq1a t y u = t u y
42 41 impac t y u = t u y u = t
43 40 42 impbii u y u = t t y u = t
44 36 43 bitri u y z u = t t y u = t
45 44 exbii u u y z u = t u t y u = t
46 vsnex t V
47 46 isseti u u = t
48 19.42v u t y u = t t y u u = t
49 47 48 mpbiran2 u t y u = t t y
50 45 49 bitri u u y z u = t t y
51 34 35 50 3bitr4ri u u y z u = t t x | x y
52 51 bibi2i t z u u y z u = t t z t x | x y
53 52 albii t t z u u y z u = t t t z t x | x y
54 53 exbii z t t z u u y z u = t z t t z t x | x y
55 30 54 mpbi z t t z t x | x y
56 dfcleq z = x | x y t t z t x | x y
57 56 exbii z z = x | x y z t t z t x | x y
58 55 57 mpbir z z = x | x y
59 58 issetri x | x y V
60 9 59 mpg y x | x y V x | x A V y x | x A V
61 ax5e y x | x A V x | x A V
62 1 7 60 61 4syl A V x | x A V