| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elisset |
⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑦 𝑦 = 𝐴 ) |
| 2 |
|
eleq2 |
⊢ ( 𝑦 = 𝐴 → ( { 𝑥 } ∈ 𝑦 ↔ { 𝑥 } ∈ 𝐴 ) ) |
| 3 |
2
|
abbidv |
⊢ ( 𝑦 = 𝐴 → { 𝑥 ∣ { 𝑥 } ∈ 𝑦 } = { 𝑥 ∣ { 𝑥 } ∈ 𝐴 } ) |
| 4 |
|
eleq1 |
⊢ ( { 𝑥 ∣ { 𝑥 } ∈ 𝑦 } = { 𝑥 ∣ { 𝑥 } ∈ 𝐴 } → ( { 𝑥 ∣ { 𝑥 } ∈ 𝑦 } ∈ V ↔ { 𝑥 ∣ { 𝑥 } ∈ 𝐴 } ∈ V ) ) |
| 5 |
4
|
biimpd |
⊢ ( { 𝑥 ∣ { 𝑥 } ∈ 𝑦 } = { 𝑥 ∣ { 𝑥 } ∈ 𝐴 } → ( { 𝑥 ∣ { 𝑥 } ∈ 𝑦 } ∈ V → { 𝑥 ∣ { 𝑥 } ∈ 𝐴 } ∈ V ) ) |
| 6 |
3 5
|
syl |
⊢ ( 𝑦 = 𝐴 → ( { 𝑥 ∣ { 𝑥 } ∈ 𝑦 } ∈ V → { 𝑥 ∣ { 𝑥 } ∈ 𝐴 } ∈ V ) ) |
| 7 |
6
|
eximi |
⊢ ( ∃ 𝑦 𝑦 = 𝐴 → ∃ 𝑦 ( { 𝑥 ∣ { 𝑥 } ∈ 𝑦 } ∈ V → { 𝑥 ∣ { 𝑥 } ∈ 𝐴 } ∈ V ) ) |
| 8 |
|
bj-eximcom |
⊢ ( ∃ 𝑦 ( { 𝑥 ∣ { 𝑥 } ∈ 𝑦 } ∈ V → { 𝑥 ∣ { 𝑥 } ∈ 𝐴 } ∈ V ) → ( ∀ 𝑦 { 𝑥 ∣ { 𝑥 } ∈ 𝑦 } ∈ V → ∃ 𝑦 { 𝑥 ∣ { 𝑥 } ∈ 𝐴 } ∈ V ) ) |
| 9 |
8
|
com12 |
⊢ ( ∀ 𝑦 { 𝑥 ∣ { 𝑥 } ∈ 𝑦 } ∈ V → ( ∃ 𝑦 ( { 𝑥 ∣ { 𝑥 } ∈ 𝑦 } ∈ V → { 𝑥 ∣ { 𝑥 } ∈ 𝐴 } ∈ V ) → ∃ 𝑦 { 𝑥 ∣ { 𝑥 } ∈ 𝐴 } ∈ V ) ) |
| 10 |
|
ax-rep |
⊢ ( ∀ 𝑢 ∃ 𝑧 ∀ 𝑡 ( ∀ 𝑧 𝑢 = { 𝑡 } → 𝑡 = 𝑧 ) → ∃ 𝑧 ∀ 𝑡 ( 𝑡 ∈ 𝑧 ↔ ∃ 𝑢 ( 𝑢 ∈ 𝑦 ∧ ∀ 𝑧 𝑢 = { 𝑡 } ) ) ) |
| 11 |
|
19.3v |
⊢ ( ∀ 𝑧 𝑢 = { 𝑡 } ↔ 𝑢 = { 𝑡 } ) |
| 12 |
11
|
sbbii |
⊢ ( [ 𝑧 / 𝑡 ] ∀ 𝑧 𝑢 = { 𝑡 } ↔ [ 𝑧 / 𝑡 ] 𝑢 = { 𝑡 } ) |
| 13 |
|
sbsbc |
⊢ ( [ 𝑧 / 𝑡 ] 𝑢 = { 𝑡 } ↔ [ 𝑧 / 𝑡 ] 𝑢 = { 𝑡 } ) |
| 14 |
|
sbceq2g |
⊢ ( 𝑧 ∈ V → ( [ 𝑧 / 𝑡 ] 𝑢 = { 𝑡 } ↔ 𝑢 = ⦋ 𝑧 / 𝑡 ⦌ { 𝑡 } ) ) |
| 15 |
14
|
elv |
⊢ ( [ 𝑧 / 𝑡 ] 𝑢 = { 𝑡 } ↔ 𝑢 = ⦋ 𝑧 / 𝑡 ⦌ { 𝑡 } ) |
| 16 |
13 15
|
bitri |
⊢ ( [ 𝑧 / 𝑡 ] 𝑢 = { 𝑡 } ↔ 𝑢 = ⦋ 𝑧 / 𝑡 ⦌ { 𝑡 } ) |
| 17 |
|
bj-csbsn |
⊢ ⦋ 𝑧 / 𝑡 ⦌ { 𝑡 } = { 𝑧 } |
| 18 |
17
|
eqeq2i |
⊢ ( 𝑢 = ⦋ 𝑧 / 𝑡 ⦌ { 𝑡 } ↔ 𝑢 = { 𝑧 } ) |
| 19 |
16 18
|
bitri |
⊢ ( [ 𝑧 / 𝑡 ] 𝑢 = { 𝑡 } ↔ 𝑢 = { 𝑧 } ) |
| 20 |
|
eqtr2 |
⊢ ( ( 𝑢 = { 𝑡 } ∧ 𝑢 = { 𝑧 } ) → { 𝑡 } = { 𝑧 } ) |
| 21 |
|
vex |
⊢ 𝑡 ∈ V |
| 22 |
21
|
sneqr |
⊢ ( { 𝑡 } = { 𝑧 } → 𝑡 = 𝑧 ) |
| 23 |
20 22
|
syl |
⊢ ( ( 𝑢 = { 𝑡 } ∧ 𝑢 = { 𝑧 } ) → 𝑡 = 𝑧 ) |
| 24 |
19 23
|
sylan2b |
⊢ ( ( 𝑢 = { 𝑡 } ∧ [ 𝑧 / 𝑡 ] 𝑢 = { 𝑡 } ) → 𝑡 = 𝑧 ) |
| 25 |
11 12 24
|
syl2anb |
⊢ ( ( ∀ 𝑧 𝑢 = { 𝑡 } ∧ [ 𝑧 / 𝑡 ] ∀ 𝑧 𝑢 = { 𝑡 } ) → 𝑡 = 𝑧 ) |
| 26 |
25
|
gen2 |
⊢ ∀ 𝑡 ∀ 𝑧 ( ( ∀ 𝑧 𝑢 = { 𝑡 } ∧ [ 𝑧 / 𝑡 ] ∀ 𝑧 𝑢 = { 𝑡 } ) → 𝑡 = 𝑧 ) |
| 27 |
|
nfa1 |
⊢ Ⅎ 𝑧 ∀ 𝑧 𝑢 = { 𝑡 } |
| 28 |
27
|
mo |
⊢ ( ∃ 𝑧 ∀ 𝑡 ( ∀ 𝑧 𝑢 = { 𝑡 } → 𝑡 = 𝑧 ) ↔ ∀ 𝑡 ∀ 𝑧 ( ( ∀ 𝑧 𝑢 = { 𝑡 } ∧ [ 𝑧 / 𝑡 ] ∀ 𝑧 𝑢 = { 𝑡 } ) → 𝑡 = 𝑧 ) ) |
| 29 |
26 28
|
mpbir |
⊢ ∃ 𝑧 ∀ 𝑡 ( ∀ 𝑧 𝑢 = { 𝑡 } → 𝑡 = 𝑧 ) |
| 30 |
10 29
|
mpg |
⊢ ∃ 𝑧 ∀ 𝑡 ( 𝑡 ∈ 𝑧 ↔ ∃ 𝑢 ( 𝑢 ∈ 𝑦 ∧ ∀ 𝑧 𝑢 = { 𝑡 } ) ) |
| 31 |
|
bj-sbel1 |
⊢ ( [ 𝑡 / 𝑥 ] { 𝑥 } ∈ 𝑦 ↔ ⦋ 𝑡 / 𝑥 ⦌ { 𝑥 } ∈ 𝑦 ) |
| 32 |
|
bj-csbsn |
⊢ ⦋ 𝑡 / 𝑥 ⦌ { 𝑥 } = { 𝑡 } |
| 33 |
32
|
eleq1i |
⊢ ( ⦋ 𝑡 / 𝑥 ⦌ { 𝑥 } ∈ 𝑦 ↔ { 𝑡 } ∈ 𝑦 ) |
| 34 |
31 33
|
bitri |
⊢ ( [ 𝑡 / 𝑥 ] { 𝑥 } ∈ 𝑦 ↔ { 𝑡 } ∈ 𝑦 ) |
| 35 |
|
df-clab |
⊢ ( 𝑡 ∈ { 𝑥 ∣ { 𝑥 } ∈ 𝑦 } ↔ [ 𝑡 / 𝑥 ] { 𝑥 } ∈ 𝑦 ) |
| 36 |
11
|
anbi2i |
⊢ ( ( 𝑢 ∈ 𝑦 ∧ ∀ 𝑧 𝑢 = { 𝑡 } ) ↔ ( 𝑢 ∈ 𝑦 ∧ 𝑢 = { 𝑡 } ) ) |
| 37 |
|
eleq1a |
⊢ ( 𝑢 ∈ 𝑦 → ( { 𝑡 } = 𝑢 → { 𝑡 } ∈ 𝑦 ) ) |
| 38 |
37
|
com12 |
⊢ ( { 𝑡 } = 𝑢 → ( 𝑢 ∈ 𝑦 → { 𝑡 } ∈ 𝑦 ) ) |
| 39 |
38
|
eqcoms |
⊢ ( 𝑢 = { 𝑡 } → ( 𝑢 ∈ 𝑦 → { 𝑡 } ∈ 𝑦 ) ) |
| 40 |
39
|
imdistanri |
⊢ ( ( 𝑢 ∈ 𝑦 ∧ 𝑢 = { 𝑡 } ) → ( { 𝑡 } ∈ 𝑦 ∧ 𝑢 = { 𝑡 } ) ) |
| 41 |
|
eleq1a |
⊢ ( { 𝑡 } ∈ 𝑦 → ( 𝑢 = { 𝑡 } → 𝑢 ∈ 𝑦 ) ) |
| 42 |
41
|
impac |
⊢ ( ( { 𝑡 } ∈ 𝑦 ∧ 𝑢 = { 𝑡 } ) → ( 𝑢 ∈ 𝑦 ∧ 𝑢 = { 𝑡 } ) ) |
| 43 |
40 42
|
impbii |
⊢ ( ( 𝑢 ∈ 𝑦 ∧ 𝑢 = { 𝑡 } ) ↔ ( { 𝑡 } ∈ 𝑦 ∧ 𝑢 = { 𝑡 } ) ) |
| 44 |
36 43
|
bitri |
⊢ ( ( 𝑢 ∈ 𝑦 ∧ ∀ 𝑧 𝑢 = { 𝑡 } ) ↔ ( { 𝑡 } ∈ 𝑦 ∧ 𝑢 = { 𝑡 } ) ) |
| 45 |
44
|
exbii |
⊢ ( ∃ 𝑢 ( 𝑢 ∈ 𝑦 ∧ ∀ 𝑧 𝑢 = { 𝑡 } ) ↔ ∃ 𝑢 ( { 𝑡 } ∈ 𝑦 ∧ 𝑢 = { 𝑡 } ) ) |
| 46 |
|
vsnex |
⊢ { 𝑡 } ∈ V |
| 47 |
46
|
isseti |
⊢ ∃ 𝑢 𝑢 = { 𝑡 } |
| 48 |
|
19.42v |
⊢ ( ∃ 𝑢 ( { 𝑡 } ∈ 𝑦 ∧ 𝑢 = { 𝑡 } ) ↔ ( { 𝑡 } ∈ 𝑦 ∧ ∃ 𝑢 𝑢 = { 𝑡 } ) ) |
| 49 |
47 48
|
mpbiran2 |
⊢ ( ∃ 𝑢 ( { 𝑡 } ∈ 𝑦 ∧ 𝑢 = { 𝑡 } ) ↔ { 𝑡 } ∈ 𝑦 ) |
| 50 |
45 49
|
bitri |
⊢ ( ∃ 𝑢 ( 𝑢 ∈ 𝑦 ∧ ∀ 𝑧 𝑢 = { 𝑡 } ) ↔ { 𝑡 } ∈ 𝑦 ) |
| 51 |
34 35 50
|
3bitr4ri |
⊢ ( ∃ 𝑢 ( 𝑢 ∈ 𝑦 ∧ ∀ 𝑧 𝑢 = { 𝑡 } ) ↔ 𝑡 ∈ { 𝑥 ∣ { 𝑥 } ∈ 𝑦 } ) |
| 52 |
51
|
bibi2i |
⊢ ( ( 𝑡 ∈ 𝑧 ↔ ∃ 𝑢 ( 𝑢 ∈ 𝑦 ∧ ∀ 𝑧 𝑢 = { 𝑡 } ) ) ↔ ( 𝑡 ∈ 𝑧 ↔ 𝑡 ∈ { 𝑥 ∣ { 𝑥 } ∈ 𝑦 } ) ) |
| 53 |
52
|
albii |
⊢ ( ∀ 𝑡 ( 𝑡 ∈ 𝑧 ↔ ∃ 𝑢 ( 𝑢 ∈ 𝑦 ∧ ∀ 𝑧 𝑢 = { 𝑡 } ) ) ↔ ∀ 𝑡 ( 𝑡 ∈ 𝑧 ↔ 𝑡 ∈ { 𝑥 ∣ { 𝑥 } ∈ 𝑦 } ) ) |
| 54 |
53
|
exbii |
⊢ ( ∃ 𝑧 ∀ 𝑡 ( 𝑡 ∈ 𝑧 ↔ ∃ 𝑢 ( 𝑢 ∈ 𝑦 ∧ ∀ 𝑧 𝑢 = { 𝑡 } ) ) ↔ ∃ 𝑧 ∀ 𝑡 ( 𝑡 ∈ 𝑧 ↔ 𝑡 ∈ { 𝑥 ∣ { 𝑥 } ∈ 𝑦 } ) ) |
| 55 |
30 54
|
mpbi |
⊢ ∃ 𝑧 ∀ 𝑡 ( 𝑡 ∈ 𝑧 ↔ 𝑡 ∈ { 𝑥 ∣ { 𝑥 } ∈ 𝑦 } ) |
| 56 |
|
dfcleq |
⊢ ( 𝑧 = { 𝑥 ∣ { 𝑥 } ∈ 𝑦 } ↔ ∀ 𝑡 ( 𝑡 ∈ 𝑧 ↔ 𝑡 ∈ { 𝑥 ∣ { 𝑥 } ∈ 𝑦 } ) ) |
| 57 |
56
|
exbii |
⊢ ( ∃ 𝑧 𝑧 = { 𝑥 ∣ { 𝑥 } ∈ 𝑦 } ↔ ∃ 𝑧 ∀ 𝑡 ( 𝑡 ∈ 𝑧 ↔ 𝑡 ∈ { 𝑥 ∣ { 𝑥 } ∈ 𝑦 } ) ) |
| 58 |
55 57
|
mpbir |
⊢ ∃ 𝑧 𝑧 = { 𝑥 ∣ { 𝑥 } ∈ 𝑦 } |
| 59 |
58
|
issetri |
⊢ { 𝑥 ∣ { 𝑥 } ∈ 𝑦 } ∈ V |
| 60 |
9 59
|
mpg |
⊢ ( ∃ 𝑦 ( { 𝑥 ∣ { 𝑥 } ∈ 𝑦 } ∈ V → { 𝑥 ∣ { 𝑥 } ∈ 𝐴 } ∈ V ) → ∃ 𝑦 { 𝑥 ∣ { 𝑥 } ∈ 𝐴 } ∈ V ) |
| 61 |
|
ax5e |
⊢ ( ∃ 𝑦 { 𝑥 ∣ { 𝑥 } ∈ 𝐴 } ∈ V → { 𝑥 ∣ { 𝑥 } ∈ 𝐴 } ∈ V ) |
| 62 |
1 7 60 61
|
4syl |
⊢ ( 𝐴 ∈ 𝑉 → { 𝑥 ∣ { 𝑥 } ∈ 𝐴 } ∈ V ) |