| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elisset | ⊢ ( 𝐴  ∈  𝑉  →  ∃ 𝑦 𝑦  =  𝐴 ) | 
						
							| 2 |  | eleq2 | ⊢ ( 𝑦  =  𝐴  →  ( { 𝑥 }  ∈  𝑦  ↔  { 𝑥 }  ∈  𝐴 ) ) | 
						
							| 3 | 2 | abbidv | ⊢ ( 𝑦  =  𝐴  →  { 𝑥  ∣  { 𝑥 }  ∈  𝑦 }  =  { 𝑥  ∣  { 𝑥 }  ∈  𝐴 } ) | 
						
							| 4 |  | eleq1 | ⊢ ( { 𝑥  ∣  { 𝑥 }  ∈  𝑦 }  =  { 𝑥  ∣  { 𝑥 }  ∈  𝐴 }  →  ( { 𝑥  ∣  { 𝑥 }  ∈  𝑦 }  ∈  V  ↔  { 𝑥  ∣  { 𝑥 }  ∈  𝐴 }  ∈  V ) ) | 
						
							| 5 | 4 | biimpd | ⊢ ( { 𝑥  ∣  { 𝑥 }  ∈  𝑦 }  =  { 𝑥  ∣  { 𝑥 }  ∈  𝐴 }  →  ( { 𝑥  ∣  { 𝑥 }  ∈  𝑦 }  ∈  V  →  { 𝑥  ∣  { 𝑥 }  ∈  𝐴 }  ∈  V ) ) | 
						
							| 6 | 3 5 | syl | ⊢ ( 𝑦  =  𝐴  →  ( { 𝑥  ∣  { 𝑥 }  ∈  𝑦 }  ∈  V  →  { 𝑥  ∣  { 𝑥 }  ∈  𝐴 }  ∈  V ) ) | 
						
							| 7 | 6 | eximi | ⊢ ( ∃ 𝑦 𝑦  =  𝐴  →  ∃ 𝑦 ( { 𝑥  ∣  { 𝑥 }  ∈  𝑦 }  ∈  V  →  { 𝑥  ∣  { 𝑥 }  ∈  𝐴 }  ∈  V ) ) | 
						
							| 8 |  | bj-eximcom | ⊢ ( ∃ 𝑦 ( { 𝑥  ∣  { 𝑥 }  ∈  𝑦 }  ∈  V  →  { 𝑥  ∣  { 𝑥 }  ∈  𝐴 }  ∈  V )  →  ( ∀ 𝑦 { 𝑥  ∣  { 𝑥 }  ∈  𝑦 }  ∈  V  →  ∃ 𝑦 { 𝑥  ∣  { 𝑥 }  ∈  𝐴 }  ∈  V ) ) | 
						
							| 9 | 8 | com12 | ⊢ ( ∀ 𝑦 { 𝑥  ∣  { 𝑥 }  ∈  𝑦 }  ∈  V  →  ( ∃ 𝑦 ( { 𝑥  ∣  { 𝑥 }  ∈  𝑦 }  ∈  V  →  { 𝑥  ∣  { 𝑥 }  ∈  𝐴 }  ∈  V )  →  ∃ 𝑦 { 𝑥  ∣  { 𝑥 }  ∈  𝐴 }  ∈  V ) ) | 
						
							| 10 |  | ax-rep | ⊢ ( ∀ 𝑢 ∃ 𝑧 ∀ 𝑡 ( ∀ 𝑧 𝑢  =  { 𝑡 }  →  𝑡  =  𝑧 )  →  ∃ 𝑧 ∀ 𝑡 ( 𝑡  ∈  𝑧  ↔  ∃ 𝑢 ( 𝑢  ∈  𝑦  ∧  ∀ 𝑧 𝑢  =  { 𝑡 } ) ) ) | 
						
							| 11 |  | 19.3v | ⊢ ( ∀ 𝑧 𝑢  =  { 𝑡 }  ↔  𝑢  =  { 𝑡 } ) | 
						
							| 12 | 11 | sbbii | ⊢ ( [ 𝑧  /  𝑡 ] ∀ 𝑧 𝑢  =  { 𝑡 }  ↔  [ 𝑧  /  𝑡 ] 𝑢  =  { 𝑡 } ) | 
						
							| 13 |  | sbsbc | ⊢ ( [ 𝑧  /  𝑡 ] 𝑢  =  { 𝑡 }  ↔  [ 𝑧  /  𝑡 ] 𝑢  =  { 𝑡 } ) | 
						
							| 14 |  | sbceq2g | ⊢ ( 𝑧  ∈  V  →  ( [ 𝑧  /  𝑡 ] 𝑢  =  { 𝑡 }  ↔  𝑢  =  ⦋ 𝑧  /  𝑡 ⦌ { 𝑡 } ) ) | 
						
							| 15 | 14 | elv | ⊢ ( [ 𝑧  /  𝑡 ] 𝑢  =  { 𝑡 }  ↔  𝑢  =  ⦋ 𝑧  /  𝑡 ⦌ { 𝑡 } ) | 
						
							| 16 | 13 15 | bitri | ⊢ ( [ 𝑧  /  𝑡 ] 𝑢  =  { 𝑡 }  ↔  𝑢  =  ⦋ 𝑧  /  𝑡 ⦌ { 𝑡 } ) | 
						
							| 17 |  | bj-csbsn | ⊢ ⦋ 𝑧  /  𝑡 ⦌ { 𝑡 }  =  { 𝑧 } | 
						
							| 18 | 17 | eqeq2i | ⊢ ( 𝑢  =  ⦋ 𝑧  /  𝑡 ⦌ { 𝑡 }  ↔  𝑢  =  { 𝑧 } ) | 
						
							| 19 | 16 18 | bitri | ⊢ ( [ 𝑧  /  𝑡 ] 𝑢  =  { 𝑡 }  ↔  𝑢  =  { 𝑧 } ) | 
						
							| 20 |  | eqtr2 | ⊢ ( ( 𝑢  =  { 𝑡 }  ∧  𝑢  =  { 𝑧 } )  →  { 𝑡 }  =  { 𝑧 } ) | 
						
							| 21 |  | vex | ⊢ 𝑡  ∈  V | 
						
							| 22 | 21 | sneqr | ⊢ ( { 𝑡 }  =  { 𝑧 }  →  𝑡  =  𝑧 ) | 
						
							| 23 | 20 22 | syl | ⊢ ( ( 𝑢  =  { 𝑡 }  ∧  𝑢  =  { 𝑧 } )  →  𝑡  =  𝑧 ) | 
						
							| 24 | 19 23 | sylan2b | ⊢ ( ( 𝑢  =  { 𝑡 }  ∧  [ 𝑧  /  𝑡 ] 𝑢  =  { 𝑡 } )  →  𝑡  =  𝑧 ) | 
						
							| 25 | 11 12 24 | syl2anb | ⊢ ( ( ∀ 𝑧 𝑢  =  { 𝑡 }  ∧  [ 𝑧  /  𝑡 ] ∀ 𝑧 𝑢  =  { 𝑡 } )  →  𝑡  =  𝑧 ) | 
						
							| 26 | 25 | gen2 | ⊢ ∀ 𝑡 ∀ 𝑧 ( ( ∀ 𝑧 𝑢  =  { 𝑡 }  ∧  [ 𝑧  /  𝑡 ] ∀ 𝑧 𝑢  =  { 𝑡 } )  →  𝑡  =  𝑧 ) | 
						
							| 27 |  | nfa1 | ⊢ Ⅎ 𝑧 ∀ 𝑧 𝑢  =  { 𝑡 } | 
						
							| 28 | 27 | mo | ⊢ ( ∃ 𝑧 ∀ 𝑡 ( ∀ 𝑧 𝑢  =  { 𝑡 }  →  𝑡  =  𝑧 )  ↔  ∀ 𝑡 ∀ 𝑧 ( ( ∀ 𝑧 𝑢  =  { 𝑡 }  ∧  [ 𝑧  /  𝑡 ] ∀ 𝑧 𝑢  =  { 𝑡 } )  →  𝑡  =  𝑧 ) ) | 
						
							| 29 | 26 28 | mpbir | ⊢ ∃ 𝑧 ∀ 𝑡 ( ∀ 𝑧 𝑢  =  { 𝑡 }  →  𝑡  =  𝑧 ) | 
						
							| 30 | 10 29 | mpg | ⊢ ∃ 𝑧 ∀ 𝑡 ( 𝑡  ∈  𝑧  ↔  ∃ 𝑢 ( 𝑢  ∈  𝑦  ∧  ∀ 𝑧 𝑢  =  { 𝑡 } ) ) | 
						
							| 31 |  | bj-sbel1 | ⊢ ( [ 𝑡  /  𝑥 ] { 𝑥 }  ∈  𝑦  ↔  ⦋ 𝑡  /  𝑥 ⦌ { 𝑥 }  ∈  𝑦 ) | 
						
							| 32 |  | bj-csbsn | ⊢ ⦋ 𝑡  /  𝑥 ⦌ { 𝑥 }  =  { 𝑡 } | 
						
							| 33 | 32 | eleq1i | ⊢ ( ⦋ 𝑡  /  𝑥 ⦌ { 𝑥 }  ∈  𝑦  ↔  { 𝑡 }  ∈  𝑦 ) | 
						
							| 34 | 31 33 | bitri | ⊢ ( [ 𝑡  /  𝑥 ] { 𝑥 }  ∈  𝑦  ↔  { 𝑡 }  ∈  𝑦 ) | 
						
							| 35 |  | df-clab | ⊢ ( 𝑡  ∈  { 𝑥  ∣  { 𝑥 }  ∈  𝑦 }  ↔  [ 𝑡  /  𝑥 ] { 𝑥 }  ∈  𝑦 ) | 
						
							| 36 | 11 | anbi2i | ⊢ ( ( 𝑢  ∈  𝑦  ∧  ∀ 𝑧 𝑢  =  { 𝑡 } )  ↔  ( 𝑢  ∈  𝑦  ∧  𝑢  =  { 𝑡 } ) ) | 
						
							| 37 |  | eleq1a | ⊢ ( 𝑢  ∈  𝑦  →  ( { 𝑡 }  =  𝑢  →  { 𝑡 }  ∈  𝑦 ) ) | 
						
							| 38 | 37 | com12 | ⊢ ( { 𝑡 }  =  𝑢  →  ( 𝑢  ∈  𝑦  →  { 𝑡 }  ∈  𝑦 ) ) | 
						
							| 39 | 38 | eqcoms | ⊢ ( 𝑢  =  { 𝑡 }  →  ( 𝑢  ∈  𝑦  →  { 𝑡 }  ∈  𝑦 ) ) | 
						
							| 40 | 39 | imdistanri | ⊢ ( ( 𝑢  ∈  𝑦  ∧  𝑢  =  { 𝑡 } )  →  ( { 𝑡 }  ∈  𝑦  ∧  𝑢  =  { 𝑡 } ) ) | 
						
							| 41 |  | eleq1a | ⊢ ( { 𝑡 }  ∈  𝑦  →  ( 𝑢  =  { 𝑡 }  →  𝑢  ∈  𝑦 ) ) | 
						
							| 42 | 41 | impac | ⊢ ( ( { 𝑡 }  ∈  𝑦  ∧  𝑢  =  { 𝑡 } )  →  ( 𝑢  ∈  𝑦  ∧  𝑢  =  { 𝑡 } ) ) | 
						
							| 43 | 40 42 | impbii | ⊢ ( ( 𝑢  ∈  𝑦  ∧  𝑢  =  { 𝑡 } )  ↔  ( { 𝑡 }  ∈  𝑦  ∧  𝑢  =  { 𝑡 } ) ) | 
						
							| 44 | 36 43 | bitri | ⊢ ( ( 𝑢  ∈  𝑦  ∧  ∀ 𝑧 𝑢  =  { 𝑡 } )  ↔  ( { 𝑡 }  ∈  𝑦  ∧  𝑢  =  { 𝑡 } ) ) | 
						
							| 45 | 44 | exbii | ⊢ ( ∃ 𝑢 ( 𝑢  ∈  𝑦  ∧  ∀ 𝑧 𝑢  =  { 𝑡 } )  ↔  ∃ 𝑢 ( { 𝑡 }  ∈  𝑦  ∧  𝑢  =  { 𝑡 } ) ) | 
						
							| 46 |  | vsnex | ⊢ { 𝑡 }  ∈  V | 
						
							| 47 | 46 | isseti | ⊢ ∃ 𝑢 𝑢  =  { 𝑡 } | 
						
							| 48 |  | 19.42v | ⊢ ( ∃ 𝑢 ( { 𝑡 }  ∈  𝑦  ∧  𝑢  =  { 𝑡 } )  ↔  ( { 𝑡 }  ∈  𝑦  ∧  ∃ 𝑢 𝑢  =  { 𝑡 } ) ) | 
						
							| 49 | 47 48 | mpbiran2 | ⊢ ( ∃ 𝑢 ( { 𝑡 }  ∈  𝑦  ∧  𝑢  =  { 𝑡 } )  ↔  { 𝑡 }  ∈  𝑦 ) | 
						
							| 50 | 45 49 | bitri | ⊢ ( ∃ 𝑢 ( 𝑢  ∈  𝑦  ∧  ∀ 𝑧 𝑢  =  { 𝑡 } )  ↔  { 𝑡 }  ∈  𝑦 ) | 
						
							| 51 | 34 35 50 | 3bitr4ri | ⊢ ( ∃ 𝑢 ( 𝑢  ∈  𝑦  ∧  ∀ 𝑧 𝑢  =  { 𝑡 } )  ↔  𝑡  ∈  { 𝑥  ∣  { 𝑥 }  ∈  𝑦 } ) | 
						
							| 52 | 51 | bibi2i | ⊢ ( ( 𝑡  ∈  𝑧  ↔  ∃ 𝑢 ( 𝑢  ∈  𝑦  ∧  ∀ 𝑧 𝑢  =  { 𝑡 } ) )  ↔  ( 𝑡  ∈  𝑧  ↔  𝑡  ∈  { 𝑥  ∣  { 𝑥 }  ∈  𝑦 } ) ) | 
						
							| 53 | 52 | albii | ⊢ ( ∀ 𝑡 ( 𝑡  ∈  𝑧  ↔  ∃ 𝑢 ( 𝑢  ∈  𝑦  ∧  ∀ 𝑧 𝑢  =  { 𝑡 } ) )  ↔  ∀ 𝑡 ( 𝑡  ∈  𝑧  ↔  𝑡  ∈  { 𝑥  ∣  { 𝑥 }  ∈  𝑦 } ) ) | 
						
							| 54 | 53 | exbii | ⊢ ( ∃ 𝑧 ∀ 𝑡 ( 𝑡  ∈  𝑧  ↔  ∃ 𝑢 ( 𝑢  ∈  𝑦  ∧  ∀ 𝑧 𝑢  =  { 𝑡 } ) )  ↔  ∃ 𝑧 ∀ 𝑡 ( 𝑡  ∈  𝑧  ↔  𝑡  ∈  { 𝑥  ∣  { 𝑥 }  ∈  𝑦 } ) ) | 
						
							| 55 | 30 54 | mpbi | ⊢ ∃ 𝑧 ∀ 𝑡 ( 𝑡  ∈  𝑧  ↔  𝑡  ∈  { 𝑥  ∣  { 𝑥 }  ∈  𝑦 } ) | 
						
							| 56 |  | dfcleq | ⊢ ( 𝑧  =  { 𝑥  ∣  { 𝑥 }  ∈  𝑦 }  ↔  ∀ 𝑡 ( 𝑡  ∈  𝑧  ↔  𝑡  ∈  { 𝑥  ∣  { 𝑥 }  ∈  𝑦 } ) ) | 
						
							| 57 | 56 | exbii | ⊢ ( ∃ 𝑧 𝑧  =  { 𝑥  ∣  { 𝑥 }  ∈  𝑦 }  ↔  ∃ 𝑧 ∀ 𝑡 ( 𝑡  ∈  𝑧  ↔  𝑡  ∈  { 𝑥  ∣  { 𝑥 }  ∈  𝑦 } ) ) | 
						
							| 58 | 55 57 | mpbir | ⊢ ∃ 𝑧 𝑧  =  { 𝑥  ∣  { 𝑥 }  ∈  𝑦 } | 
						
							| 59 | 58 | issetri | ⊢ { 𝑥  ∣  { 𝑥 }  ∈  𝑦 }  ∈  V | 
						
							| 60 | 9 59 | mpg | ⊢ ( ∃ 𝑦 ( { 𝑥  ∣  { 𝑥 }  ∈  𝑦 }  ∈  V  →  { 𝑥  ∣  { 𝑥 }  ∈  𝐴 }  ∈  V )  →  ∃ 𝑦 { 𝑥  ∣  { 𝑥 }  ∈  𝐴 }  ∈  V ) | 
						
							| 61 |  | ax5e | ⊢ ( ∃ 𝑦 { 𝑥  ∣  { 𝑥 }  ∈  𝐴 }  ∈  V  →  { 𝑥  ∣  { 𝑥 }  ∈  𝐴 }  ∈  V ) | 
						
							| 62 | 1 7 60 61 | 4syl | ⊢ ( 𝐴  ∈  𝑉  →  { 𝑥  ∣  { 𝑥 }  ∈  𝐴 }  ∈  V ) |