Step |
Hyp |
Ref |
Expression |
1 |
|
elisset |
⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑦 𝑦 = 𝐴 ) |
2 |
|
eleq2 |
⊢ ( 𝑦 = 𝐴 → ( { 𝑥 } ∈ 𝑦 ↔ { 𝑥 } ∈ 𝐴 ) ) |
3 |
2
|
abbidv |
⊢ ( 𝑦 = 𝐴 → { 𝑥 ∣ { 𝑥 } ∈ 𝑦 } = { 𝑥 ∣ { 𝑥 } ∈ 𝐴 } ) |
4 |
|
eleq1 |
⊢ ( { 𝑥 ∣ { 𝑥 } ∈ 𝑦 } = { 𝑥 ∣ { 𝑥 } ∈ 𝐴 } → ( { 𝑥 ∣ { 𝑥 } ∈ 𝑦 } ∈ V ↔ { 𝑥 ∣ { 𝑥 } ∈ 𝐴 } ∈ V ) ) |
5 |
4
|
biimpd |
⊢ ( { 𝑥 ∣ { 𝑥 } ∈ 𝑦 } = { 𝑥 ∣ { 𝑥 } ∈ 𝐴 } → ( { 𝑥 ∣ { 𝑥 } ∈ 𝑦 } ∈ V → { 𝑥 ∣ { 𝑥 } ∈ 𝐴 } ∈ V ) ) |
6 |
3 5
|
syl |
⊢ ( 𝑦 = 𝐴 → ( { 𝑥 ∣ { 𝑥 } ∈ 𝑦 } ∈ V → { 𝑥 ∣ { 𝑥 } ∈ 𝐴 } ∈ V ) ) |
7 |
6
|
eximi |
⊢ ( ∃ 𝑦 𝑦 = 𝐴 → ∃ 𝑦 ( { 𝑥 ∣ { 𝑥 } ∈ 𝑦 } ∈ V → { 𝑥 ∣ { 𝑥 } ∈ 𝐴 } ∈ V ) ) |
8 |
1 7
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑦 ( { 𝑥 ∣ { 𝑥 } ∈ 𝑦 } ∈ V → { 𝑥 ∣ { 𝑥 } ∈ 𝐴 } ∈ V ) ) |
9 |
|
bj-eximcom |
⊢ ( ∃ 𝑦 ( { 𝑥 ∣ { 𝑥 } ∈ 𝑦 } ∈ V → { 𝑥 ∣ { 𝑥 } ∈ 𝐴 } ∈ V ) → ( ∀ 𝑦 { 𝑥 ∣ { 𝑥 } ∈ 𝑦 } ∈ V → ∃ 𝑦 { 𝑥 ∣ { 𝑥 } ∈ 𝐴 } ∈ V ) ) |
10 |
9
|
com12 |
⊢ ( ∀ 𝑦 { 𝑥 ∣ { 𝑥 } ∈ 𝑦 } ∈ V → ( ∃ 𝑦 ( { 𝑥 ∣ { 𝑥 } ∈ 𝑦 } ∈ V → { 𝑥 ∣ { 𝑥 } ∈ 𝐴 } ∈ V ) → ∃ 𝑦 { 𝑥 ∣ { 𝑥 } ∈ 𝐴 } ∈ V ) ) |
11 |
|
ax-rep |
⊢ ( ∀ 𝑢 ∃ 𝑧 ∀ 𝑡 ( ∀ 𝑧 𝑢 = { 𝑡 } → 𝑡 = 𝑧 ) → ∃ 𝑧 ∀ 𝑡 ( 𝑡 ∈ 𝑧 ↔ ∃ 𝑢 ( 𝑢 ∈ 𝑦 ∧ ∀ 𝑧 𝑢 = { 𝑡 } ) ) ) |
12 |
|
19.3v |
⊢ ( ∀ 𝑧 𝑢 = { 𝑡 } ↔ 𝑢 = { 𝑡 } ) |
13 |
12
|
sbbii |
⊢ ( [ 𝑧 / 𝑡 ] ∀ 𝑧 𝑢 = { 𝑡 } ↔ [ 𝑧 / 𝑡 ] 𝑢 = { 𝑡 } ) |
14 |
|
sbsbc |
⊢ ( [ 𝑧 / 𝑡 ] 𝑢 = { 𝑡 } ↔ [ 𝑧 / 𝑡 ] 𝑢 = { 𝑡 } ) |
15 |
|
sbceq2g |
⊢ ( 𝑧 ∈ V → ( [ 𝑧 / 𝑡 ] 𝑢 = { 𝑡 } ↔ 𝑢 = ⦋ 𝑧 / 𝑡 ⦌ { 𝑡 } ) ) |
16 |
15
|
elv |
⊢ ( [ 𝑧 / 𝑡 ] 𝑢 = { 𝑡 } ↔ 𝑢 = ⦋ 𝑧 / 𝑡 ⦌ { 𝑡 } ) |
17 |
14 16
|
bitri |
⊢ ( [ 𝑧 / 𝑡 ] 𝑢 = { 𝑡 } ↔ 𝑢 = ⦋ 𝑧 / 𝑡 ⦌ { 𝑡 } ) |
18 |
|
bj-csbsn |
⊢ ⦋ 𝑧 / 𝑡 ⦌ { 𝑡 } = { 𝑧 } |
19 |
18
|
eqeq2i |
⊢ ( 𝑢 = ⦋ 𝑧 / 𝑡 ⦌ { 𝑡 } ↔ 𝑢 = { 𝑧 } ) |
20 |
17 19
|
bitri |
⊢ ( [ 𝑧 / 𝑡 ] 𝑢 = { 𝑡 } ↔ 𝑢 = { 𝑧 } ) |
21 |
|
eqtr2 |
⊢ ( ( 𝑢 = { 𝑡 } ∧ 𝑢 = { 𝑧 } ) → { 𝑡 } = { 𝑧 } ) |
22 |
|
vex |
⊢ 𝑡 ∈ V |
23 |
22
|
sneqr |
⊢ ( { 𝑡 } = { 𝑧 } → 𝑡 = 𝑧 ) |
24 |
21 23
|
syl |
⊢ ( ( 𝑢 = { 𝑡 } ∧ 𝑢 = { 𝑧 } ) → 𝑡 = 𝑧 ) |
25 |
20 24
|
sylan2b |
⊢ ( ( 𝑢 = { 𝑡 } ∧ [ 𝑧 / 𝑡 ] 𝑢 = { 𝑡 } ) → 𝑡 = 𝑧 ) |
26 |
12 13 25
|
syl2anb |
⊢ ( ( ∀ 𝑧 𝑢 = { 𝑡 } ∧ [ 𝑧 / 𝑡 ] ∀ 𝑧 𝑢 = { 𝑡 } ) → 𝑡 = 𝑧 ) |
27 |
26
|
gen2 |
⊢ ∀ 𝑡 ∀ 𝑧 ( ( ∀ 𝑧 𝑢 = { 𝑡 } ∧ [ 𝑧 / 𝑡 ] ∀ 𝑧 𝑢 = { 𝑡 } ) → 𝑡 = 𝑧 ) |
28 |
|
nfa1 |
⊢ Ⅎ 𝑧 ∀ 𝑧 𝑢 = { 𝑡 } |
29 |
28
|
mo |
⊢ ( ∃ 𝑧 ∀ 𝑡 ( ∀ 𝑧 𝑢 = { 𝑡 } → 𝑡 = 𝑧 ) ↔ ∀ 𝑡 ∀ 𝑧 ( ( ∀ 𝑧 𝑢 = { 𝑡 } ∧ [ 𝑧 / 𝑡 ] ∀ 𝑧 𝑢 = { 𝑡 } ) → 𝑡 = 𝑧 ) ) |
30 |
27 29
|
mpbir |
⊢ ∃ 𝑧 ∀ 𝑡 ( ∀ 𝑧 𝑢 = { 𝑡 } → 𝑡 = 𝑧 ) |
31 |
11 30
|
mpg |
⊢ ∃ 𝑧 ∀ 𝑡 ( 𝑡 ∈ 𝑧 ↔ ∃ 𝑢 ( 𝑢 ∈ 𝑦 ∧ ∀ 𝑧 𝑢 = { 𝑡 } ) ) |
32 |
|
bj-sbel1 |
⊢ ( [ 𝑡 / 𝑥 ] { 𝑥 } ∈ 𝑦 ↔ ⦋ 𝑡 / 𝑥 ⦌ { 𝑥 } ∈ 𝑦 ) |
33 |
|
bj-csbsn |
⊢ ⦋ 𝑡 / 𝑥 ⦌ { 𝑥 } = { 𝑡 } |
34 |
33
|
eleq1i |
⊢ ( ⦋ 𝑡 / 𝑥 ⦌ { 𝑥 } ∈ 𝑦 ↔ { 𝑡 } ∈ 𝑦 ) |
35 |
32 34
|
bitri |
⊢ ( [ 𝑡 / 𝑥 ] { 𝑥 } ∈ 𝑦 ↔ { 𝑡 } ∈ 𝑦 ) |
36 |
|
df-clab |
⊢ ( 𝑡 ∈ { 𝑥 ∣ { 𝑥 } ∈ 𝑦 } ↔ [ 𝑡 / 𝑥 ] { 𝑥 } ∈ 𝑦 ) |
37 |
12
|
anbi2i |
⊢ ( ( 𝑢 ∈ 𝑦 ∧ ∀ 𝑧 𝑢 = { 𝑡 } ) ↔ ( 𝑢 ∈ 𝑦 ∧ 𝑢 = { 𝑡 } ) ) |
38 |
|
eleq1a |
⊢ ( 𝑢 ∈ 𝑦 → ( { 𝑡 } = 𝑢 → { 𝑡 } ∈ 𝑦 ) ) |
39 |
38
|
com12 |
⊢ ( { 𝑡 } = 𝑢 → ( 𝑢 ∈ 𝑦 → { 𝑡 } ∈ 𝑦 ) ) |
40 |
39
|
eqcoms |
⊢ ( 𝑢 = { 𝑡 } → ( 𝑢 ∈ 𝑦 → { 𝑡 } ∈ 𝑦 ) ) |
41 |
40
|
imdistanri |
⊢ ( ( 𝑢 ∈ 𝑦 ∧ 𝑢 = { 𝑡 } ) → ( { 𝑡 } ∈ 𝑦 ∧ 𝑢 = { 𝑡 } ) ) |
42 |
|
eleq1a |
⊢ ( { 𝑡 } ∈ 𝑦 → ( 𝑢 = { 𝑡 } → 𝑢 ∈ 𝑦 ) ) |
43 |
42
|
impac |
⊢ ( ( { 𝑡 } ∈ 𝑦 ∧ 𝑢 = { 𝑡 } ) → ( 𝑢 ∈ 𝑦 ∧ 𝑢 = { 𝑡 } ) ) |
44 |
41 43
|
impbii |
⊢ ( ( 𝑢 ∈ 𝑦 ∧ 𝑢 = { 𝑡 } ) ↔ ( { 𝑡 } ∈ 𝑦 ∧ 𝑢 = { 𝑡 } ) ) |
45 |
37 44
|
bitri |
⊢ ( ( 𝑢 ∈ 𝑦 ∧ ∀ 𝑧 𝑢 = { 𝑡 } ) ↔ ( { 𝑡 } ∈ 𝑦 ∧ 𝑢 = { 𝑡 } ) ) |
46 |
45
|
exbii |
⊢ ( ∃ 𝑢 ( 𝑢 ∈ 𝑦 ∧ ∀ 𝑧 𝑢 = { 𝑡 } ) ↔ ∃ 𝑢 ( { 𝑡 } ∈ 𝑦 ∧ 𝑢 = { 𝑡 } ) ) |
47 |
|
snex |
⊢ { 𝑡 } ∈ V |
48 |
47
|
isseti |
⊢ ∃ 𝑢 𝑢 = { 𝑡 } |
49 |
|
19.42v |
⊢ ( ∃ 𝑢 ( { 𝑡 } ∈ 𝑦 ∧ 𝑢 = { 𝑡 } ) ↔ ( { 𝑡 } ∈ 𝑦 ∧ ∃ 𝑢 𝑢 = { 𝑡 } ) ) |
50 |
48 49
|
mpbiran2 |
⊢ ( ∃ 𝑢 ( { 𝑡 } ∈ 𝑦 ∧ 𝑢 = { 𝑡 } ) ↔ { 𝑡 } ∈ 𝑦 ) |
51 |
46 50
|
bitri |
⊢ ( ∃ 𝑢 ( 𝑢 ∈ 𝑦 ∧ ∀ 𝑧 𝑢 = { 𝑡 } ) ↔ { 𝑡 } ∈ 𝑦 ) |
52 |
35 36 51
|
3bitr4ri |
⊢ ( ∃ 𝑢 ( 𝑢 ∈ 𝑦 ∧ ∀ 𝑧 𝑢 = { 𝑡 } ) ↔ 𝑡 ∈ { 𝑥 ∣ { 𝑥 } ∈ 𝑦 } ) |
53 |
52
|
bibi2i |
⊢ ( ( 𝑡 ∈ 𝑧 ↔ ∃ 𝑢 ( 𝑢 ∈ 𝑦 ∧ ∀ 𝑧 𝑢 = { 𝑡 } ) ) ↔ ( 𝑡 ∈ 𝑧 ↔ 𝑡 ∈ { 𝑥 ∣ { 𝑥 } ∈ 𝑦 } ) ) |
54 |
53
|
albii |
⊢ ( ∀ 𝑡 ( 𝑡 ∈ 𝑧 ↔ ∃ 𝑢 ( 𝑢 ∈ 𝑦 ∧ ∀ 𝑧 𝑢 = { 𝑡 } ) ) ↔ ∀ 𝑡 ( 𝑡 ∈ 𝑧 ↔ 𝑡 ∈ { 𝑥 ∣ { 𝑥 } ∈ 𝑦 } ) ) |
55 |
54
|
exbii |
⊢ ( ∃ 𝑧 ∀ 𝑡 ( 𝑡 ∈ 𝑧 ↔ ∃ 𝑢 ( 𝑢 ∈ 𝑦 ∧ ∀ 𝑧 𝑢 = { 𝑡 } ) ) ↔ ∃ 𝑧 ∀ 𝑡 ( 𝑡 ∈ 𝑧 ↔ 𝑡 ∈ { 𝑥 ∣ { 𝑥 } ∈ 𝑦 } ) ) |
56 |
31 55
|
mpbi |
⊢ ∃ 𝑧 ∀ 𝑡 ( 𝑡 ∈ 𝑧 ↔ 𝑡 ∈ { 𝑥 ∣ { 𝑥 } ∈ 𝑦 } ) |
57 |
|
dfcleq |
⊢ ( 𝑧 = { 𝑥 ∣ { 𝑥 } ∈ 𝑦 } ↔ ∀ 𝑡 ( 𝑡 ∈ 𝑧 ↔ 𝑡 ∈ { 𝑥 ∣ { 𝑥 } ∈ 𝑦 } ) ) |
58 |
57
|
exbii |
⊢ ( ∃ 𝑧 𝑧 = { 𝑥 ∣ { 𝑥 } ∈ 𝑦 } ↔ ∃ 𝑧 ∀ 𝑡 ( 𝑡 ∈ 𝑧 ↔ 𝑡 ∈ { 𝑥 ∣ { 𝑥 } ∈ 𝑦 } ) ) |
59 |
56 58
|
mpbir |
⊢ ∃ 𝑧 𝑧 = { 𝑥 ∣ { 𝑥 } ∈ 𝑦 } |
60 |
59
|
issetri |
⊢ { 𝑥 ∣ { 𝑥 } ∈ 𝑦 } ∈ V |
61 |
10 60
|
mpg |
⊢ ( ∃ 𝑦 ( { 𝑥 ∣ { 𝑥 } ∈ 𝑦 } ∈ V → { 𝑥 ∣ { 𝑥 } ∈ 𝐴 } ∈ V ) → ∃ 𝑦 { 𝑥 ∣ { 𝑥 } ∈ 𝐴 } ∈ V ) |
62 |
8 61
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑦 { 𝑥 ∣ { 𝑥 } ∈ 𝐴 } ∈ V ) |
63 |
|
ax5e |
⊢ ( ∃ 𝑦 { 𝑥 ∣ { 𝑥 } ∈ 𝐴 } ∈ V → { 𝑥 ∣ { 𝑥 } ∈ 𝐴 } ∈ V ) |
64 |
62 63
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → { 𝑥 ∣ { 𝑥 } ∈ 𝐴 } ∈ V ) |