Metamath Proof Explorer


Theorem bj-csbsn

Description: Substitution in a singleton. (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion bj-csbsn 𝐴 / 𝑥 { 𝑥 } = { 𝐴 }

Proof

Step Hyp Ref Expression
1 bj-csbsnlem 𝑦 / 𝑥 { 𝑥 } = { 𝑦 }
2 1 csbeq2i 𝐴 / 𝑦 𝑦 / 𝑥 { 𝑥 } = 𝐴 / 𝑦 { 𝑦 }
3 csbcow 𝐴 / 𝑦 𝑦 / 𝑥 { 𝑥 } = 𝐴 / 𝑥 { 𝑥 }
4 bj-csbsnlem 𝐴 / 𝑦 { 𝑦 } = { 𝐴 }
5 2 3 4 3eqtr3i 𝐴 / 𝑥 { 𝑥 } = { 𝐴 }