Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for BJ
Set theory
Lemmas for class substitution
bj-csbsn
Next ⟩
bj-sbel1
Metamath Proof Explorer
Ascii
Unicode
Theorem
bj-csbsn
Description:
Substitution in a singleton.
(Contributed by
BJ
, 6-Oct-2018)
Ref
Expression
Assertion
bj-csbsn
⊢
⦋
A
/
x
⦌
x
=
A
Proof
Step
Hyp
Ref
Expression
1
bj-csbsnlem
⊢
⦋
y
/
x
⦌
x
=
y
2
1
csbeq2i
⊢
⦋
A
/
y
⦌
⦋
y
/
x
⦌
x
=
⦋
A
/
y
⦌
y
3
csbcow
⊢
⦋
A
/
y
⦌
⦋
y
/
x
⦌
x
=
⦋
A
/
x
⦌
x
4
bj-csbsnlem
⊢
⦋
A
/
y
⦌
y
=
A
5
2
3
4
3eqtr3i
⊢
⦋
A
/
x
⦌
x
=
A