Metamath Proof Explorer


Theorem bj-sbel1

Description: Version of sbcel1g when substituting a set. (Note: one could have a corresponding version of sbcel12 when substituting a set, but the point here is that the antecedent of sbcel1g is not needed when substituting a set.) (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion bj-sbel1 y x A B y / x A B

Proof

Step Hyp Ref Expression
1 sbsbc y x A B [˙y / x]˙ A B
2 sbcel1g y V [˙y / x]˙ A B y / x A B
3 2 elv [˙y / x]˙ A B y / x A B
4 1 3 bitri y x A B y / x A B