Metamath Proof Explorer


Theorem bj-sbel1

Description: Version of sbcel1g when substituting a set. (Note: one could have a corresponding version of sbcel12 when substituting a set, but the point here is that the antecedent of sbcel1g is not needed when substituting a set.) (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion bj-sbel1
|- ( [ y / x ] A e. B <-> [_ y / x ]_ A e. B )

Proof

Step Hyp Ref Expression
1 sbsbc
 |-  ( [ y / x ] A e. B <-> [. y / x ]. A e. B )
2 sbcel1g
 |-  ( y e. _V -> ( [. y / x ]. A e. B <-> [_ y / x ]_ A e. B ) )
3 2 elv
 |-  ( [. y / x ]. A e. B <-> [_ y / x ]_ A e. B )
4 1 3 bitri
 |-  ( [ y / x ] A e. B <-> [_ y / x ]_ A e. B )