Description: Move proper substitution in and out of a membership relation. Note that the scope of [. A / x ]. is the wff B e. C , whereas the scope of [_ A / x ]_ is the class B . (Contributed by NM, 10-Nov-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | sbcel1g | |- ( A e. V -> ( [. A / x ]. B e. C <-> [_ A / x ]_ B e. C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcel12 | |- ( [. A / x ]. B e. C <-> [_ A / x ]_ B e. [_ A / x ]_ C ) |
|
2 | csbconstg | |- ( A e. V -> [_ A / x ]_ C = C ) |
|
3 | 2 | eleq2d | |- ( A e. V -> ( [_ A / x ]_ B e. [_ A / x ]_ C <-> [_ A / x ]_ B e. C ) ) |
4 | 1 3 | syl5bb | |- ( A e. V -> ( [. A / x ]. B e. C <-> [_ A / x ]_ B e. C ) ) |