Metamath Proof Explorer


Theorem bj-csbsn

Description: Substitution in a singleton. (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion bj-csbsn
|- [_ A / x ]_ { x } = { A }

Proof

Step Hyp Ref Expression
1 bj-csbsnlem
 |-  [_ y / x ]_ { x } = { y }
2 1 csbeq2i
 |-  [_ A / y ]_ [_ y / x ]_ { x } = [_ A / y ]_ { y }
3 csbcow
 |-  [_ A / y ]_ [_ y / x ]_ { x } = [_ A / x ]_ { x }
4 bj-csbsnlem
 |-  [_ A / y ]_ { y } = { A }
5 2 3 4 3eqtr3i
 |-  [_ A / x ]_ { x } = { A }