Description: Substitution in a singleton. (Contributed by BJ, 6-Oct-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-csbsn | |- [_ A / x ]_ { x } = { A } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-csbsnlem | |- [_ y / x ]_ { x } = { y } |
|
2 | 1 | csbeq2i | |- [_ A / y ]_ [_ y / x ]_ { x } = [_ A / y ]_ { y } |
3 | csbcow | |- [_ A / y ]_ [_ y / x ]_ { x } = [_ A / x ]_ { x } |
|
4 | bj-csbsnlem | |- [_ A / y ]_ { y } = { A } |
|
5 | 2 3 4 | 3eqtr3i | |- [_ A / x ]_ { x } = { A } |