Metamath Proof Explorer


Theorem bj-csbsnlem

Description: Lemma for bj-csbsn (in this lemma, x cannot occur in A ). (Contributed by BJ, 6-Oct-2018) (New usage is discouraged.)

Ref Expression
Assertion bj-csbsnlem
|- [_ A / x ]_ { x } = { A }

Proof

Step Hyp Ref Expression
1 abid
 |-  ( y e. { y | [. A / x ]. y e. { x } } <-> [. A / x ]. y e. { x } )
2 df-sbc
 |-  ( [. A / x ]. y e. { x } <-> A e. { x | y e. { x } } )
3 clelab
 |-  ( A e. { x | y e. { x } } <-> E. x ( x = A /\ y e. { x } ) )
4 velsn
 |-  ( y e. { x } <-> y = x )
5 4 anbi2i
 |-  ( ( x = A /\ y e. { x } ) <-> ( x = A /\ y = x ) )
6 5 exbii
 |-  ( E. x ( x = A /\ y e. { x } ) <-> E. x ( x = A /\ y = x ) )
7 eqeq2
 |-  ( x = A -> ( y = x <-> y = A ) )
8 7 pm5.32i
 |-  ( ( x = A /\ y = x ) <-> ( x = A /\ y = A ) )
9 8 exbii
 |-  ( E. x ( x = A /\ y = x ) <-> E. x ( x = A /\ y = A ) )
10 19.41v
 |-  ( E. x ( x = A /\ y = A ) <-> ( E. x x = A /\ y = A ) )
11 simpr
 |-  ( ( E. x x = A /\ y = A ) -> y = A )
12 eqvisset
 |-  ( y = A -> A e. _V )
13 elisset
 |-  ( A e. _V -> E. x x = A )
14 12 13 syl
 |-  ( y = A -> E. x x = A )
15 14 ancri
 |-  ( y = A -> ( E. x x = A /\ y = A ) )
16 11 15 impbii
 |-  ( ( E. x x = A /\ y = A ) <-> y = A )
17 9 10 16 3bitri
 |-  ( E. x ( x = A /\ y = x ) <-> y = A )
18 3 6 17 3bitri
 |-  ( A e. { x | y e. { x } } <-> y = A )
19 1 2 18 3bitri
 |-  ( y e. { y | [. A / x ]. y e. { x } } <-> y = A )
20 df-csb
 |-  [_ A / x ]_ { x } = { y | [. A / x ]. y e. { x } }
21 20 eleq2i
 |-  ( y e. [_ A / x ]_ { x } <-> y e. { y | [. A / x ]. y e. { x } } )
22 velsn
 |-  ( y e. { A } <-> y = A )
23 19 21 22 3bitr4i
 |-  ( y e. [_ A / x ]_ { x } <-> y e. { A } )
24 23 eqriv
 |-  [_ A / x ]_ { x } = { A }