Step |
Hyp |
Ref |
Expression |
1 |
|
abid |
⊢ ( 𝑦 ∈ { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ { 𝑥 } } ↔ [ 𝐴 / 𝑥 ] 𝑦 ∈ { 𝑥 } ) |
2 |
|
df-sbc |
⊢ ( [ 𝐴 / 𝑥 ] 𝑦 ∈ { 𝑥 } ↔ 𝐴 ∈ { 𝑥 ∣ 𝑦 ∈ { 𝑥 } } ) |
3 |
|
clelab |
⊢ ( 𝐴 ∈ { 𝑥 ∣ 𝑦 ∈ { 𝑥 } } ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝑦 ∈ { 𝑥 } ) ) |
4 |
|
velsn |
⊢ ( 𝑦 ∈ { 𝑥 } ↔ 𝑦 = 𝑥 ) |
5 |
4
|
anbi2i |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 ∈ { 𝑥 } ) ↔ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝑥 ) ) |
6 |
5
|
exbii |
⊢ ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝑦 ∈ { 𝑥 } ) ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝑥 ) ) |
7 |
|
eqeq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑦 = 𝑥 ↔ 𝑦 = 𝐴 ) ) |
8 |
7
|
pm5.32i |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝑥 ) ↔ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐴 ) ) |
9 |
8
|
exbii |
⊢ ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝑥 ) ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐴 ) ) |
10 |
|
19.41v |
⊢ ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐴 ) ↔ ( ∃ 𝑥 𝑥 = 𝐴 ∧ 𝑦 = 𝐴 ) ) |
11 |
|
simpr |
⊢ ( ( ∃ 𝑥 𝑥 = 𝐴 ∧ 𝑦 = 𝐴 ) → 𝑦 = 𝐴 ) |
12 |
|
eqvisset |
⊢ ( 𝑦 = 𝐴 → 𝐴 ∈ V ) |
13 |
|
elisset |
⊢ ( 𝐴 ∈ V → ∃ 𝑥 𝑥 = 𝐴 ) |
14 |
12 13
|
syl |
⊢ ( 𝑦 = 𝐴 → ∃ 𝑥 𝑥 = 𝐴 ) |
15 |
14
|
ancri |
⊢ ( 𝑦 = 𝐴 → ( ∃ 𝑥 𝑥 = 𝐴 ∧ 𝑦 = 𝐴 ) ) |
16 |
11 15
|
impbii |
⊢ ( ( ∃ 𝑥 𝑥 = 𝐴 ∧ 𝑦 = 𝐴 ) ↔ 𝑦 = 𝐴 ) |
17 |
9 10 16
|
3bitri |
⊢ ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝑥 ) ↔ 𝑦 = 𝐴 ) |
18 |
3 6 17
|
3bitri |
⊢ ( 𝐴 ∈ { 𝑥 ∣ 𝑦 ∈ { 𝑥 } } ↔ 𝑦 = 𝐴 ) |
19 |
1 2 18
|
3bitri |
⊢ ( 𝑦 ∈ { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ { 𝑥 } } ↔ 𝑦 = 𝐴 ) |
20 |
|
df-csb |
⊢ ⦋ 𝐴 / 𝑥 ⦌ { 𝑥 } = { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ { 𝑥 } } |
21 |
20
|
eleq2i |
⊢ ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ { 𝑥 } ↔ 𝑦 ∈ { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ { 𝑥 } } ) |
22 |
|
velsn |
⊢ ( 𝑦 ∈ { 𝐴 } ↔ 𝑦 = 𝐴 ) |
23 |
19 21 22
|
3bitr4i |
⊢ ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ { 𝑥 } ↔ 𝑦 ∈ { 𝐴 } ) |
24 |
23
|
eqriv |
⊢ ⦋ 𝐴 / 𝑥 ⦌ { 𝑥 } = { 𝐴 } |