Metamath Proof Explorer


Theorem bj-csbsnlem

Description: Lemma for bj-csbsn (in this lemma, x cannot occur in A ). (Contributed by BJ, 6-Oct-2018) (New usage is discouraged.)

Ref Expression
Assertion bj-csbsnlem 𝐴 / 𝑥 { 𝑥 } = { 𝐴 }

Proof

Step Hyp Ref Expression
1 abid ( 𝑦 ∈ { 𝑦[ 𝐴 / 𝑥 ] 𝑦 ∈ { 𝑥 } } ↔ [ 𝐴 / 𝑥 ] 𝑦 ∈ { 𝑥 } )
2 df-sbc ( [ 𝐴 / 𝑥 ] 𝑦 ∈ { 𝑥 } ↔ 𝐴 ∈ { 𝑥𝑦 ∈ { 𝑥 } } )
3 clelab ( 𝐴 ∈ { 𝑥𝑦 ∈ { 𝑥 } } ↔ ∃ 𝑥 ( 𝑥 = 𝐴𝑦 ∈ { 𝑥 } ) )
4 velsn ( 𝑦 ∈ { 𝑥 } ↔ 𝑦 = 𝑥 )
5 4 anbi2i ( ( 𝑥 = 𝐴𝑦 ∈ { 𝑥 } ) ↔ ( 𝑥 = 𝐴𝑦 = 𝑥 ) )
6 5 exbii ( ∃ 𝑥 ( 𝑥 = 𝐴𝑦 ∈ { 𝑥 } ) ↔ ∃ 𝑥 ( 𝑥 = 𝐴𝑦 = 𝑥 ) )
7 eqeq2 ( 𝑥 = 𝐴 → ( 𝑦 = 𝑥𝑦 = 𝐴 ) )
8 7 pm5.32i ( ( 𝑥 = 𝐴𝑦 = 𝑥 ) ↔ ( 𝑥 = 𝐴𝑦 = 𝐴 ) )
9 8 exbii ( ∃ 𝑥 ( 𝑥 = 𝐴𝑦 = 𝑥 ) ↔ ∃ 𝑥 ( 𝑥 = 𝐴𝑦 = 𝐴 ) )
10 19.41v ( ∃ 𝑥 ( 𝑥 = 𝐴𝑦 = 𝐴 ) ↔ ( ∃ 𝑥 𝑥 = 𝐴𝑦 = 𝐴 ) )
11 simpr ( ( ∃ 𝑥 𝑥 = 𝐴𝑦 = 𝐴 ) → 𝑦 = 𝐴 )
12 eqvisset ( 𝑦 = 𝐴𝐴 ∈ V )
13 elisset ( 𝐴 ∈ V → ∃ 𝑥 𝑥 = 𝐴 )
14 12 13 syl ( 𝑦 = 𝐴 → ∃ 𝑥 𝑥 = 𝐴 )
15 14 ancri ( 𝑦 = 𝐴 → ( ∃ 𝑥 𝑥 = 𝐴𝑦 = 𝐴 ) )
16 11 15 impbii ( ( ∃ 𝑥 𝑥 = 𝐴𝑦 = 𝐴 ) ↔ 𝑦 = 𝐴 )
17 9 10 16 3bitri ( ∃ 𝑥 ( 𝑥 = 𝐴𝑦 = 𝑥 ) ↔ 𝑦 = 𝐴 )
18 3 6 17 3bitri ( 𝐴 ∈ { 𝑥𝑦 ∈ { 𝑥 } } ↔ 𝑦 = 𝐴 )
19 1 2 18 3bitri ( 𝑦 ∈ { 𝑦[ 𝐴 / 𝑥 ] 𝑦 ∈ { 𝑥 } } ↔ 𝑦 = 𝐴 )
20 df-csb 𝐴 / 𝑥 { 𝑥 } = { 𝑦[ 𝐴 / 𝑥 ] 𝑦 ∈ { 𝑥 } }
21 20 eleq2i ( 𝑦 𝐴 / 𝑥 { 𝑥 } ↔ 𝑦 ∈ { 𝑦[ 𝐴 / 𝑥 ] 𝑦 ∈ { 𝑥 } } )
22 velsn ( 𝑦 ∈ { 𝐴 } ↔ 𝑦 = 𝐴 )
23 19 21 22 3bitr4i ( 𝑦 𝐴 / 𝑥 { 𝑥 } ↔ 𝑦 ∈ { 𝐴 } )
24 23 eqriv 𝐴 / 𝑥 { 𝑥 } = { 𝐴 }