Metamath Proof Explorer


Theorem bj-clex

Description: Sethood of certain classes. (Contributed by BJ, 2-Apr-2019)

Ref Expression
Assertion bj-clex ( 𝐴𝑉 → { 𝑥 ∣ { 𝑥 } ∈ ( 𝐴𝐵 ) } ∈ V )

Proof

Step Hyp Ref Expression
1 imaexg ( 𝐴𝑉 → ( 𝐴𝐵 ) ∈ V )
2 bj-snsetex ( ( 𝐴𝐵 ) ∈ V → { 𝑥 ∣ { 𝑥 } ∈ ( 𝐴𝐵 ) } ∈ V )
3 1 2 syl ( 𝐴𝑉 → { 𝑥 ∣ { 𝑥 } ∈ ( 𝐴𝐵 ) } ∈ V )