Description: Two ways of stating that a class is a set. (Contributed by BJ, 18-Jan-2025) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | bj-clex.1 | ⊢ ( 𝑥 ∈ 𝐴 ↔ 𝜑 ) | |
Assertion | bj-clex | ⊢ ( 𝐴 ∈ V ↔ ∃ 𝑦 ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ 𝜑 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-clex.1 | ⊢ ( 𝑥 ∈ 𝐴 ↔ 𝜑 ) | |
2 | isset | ⊢ ( 𝐴 ∈ V ↔ ∃ 𝑦 𝑦 = 𝐴 ) | |
3 | dfcleq | ⊢ ( 𝑦 = 𝐴 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝐴 ) ) | |
4 | 1 | bibi2i | ⊢ ( ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝐴 ) ↔ ( 𝑥 ∈ 𝑦 ↔ 𝜑 ) ) |
5 | 4 | albii | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝐴 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ 𝜑 ) ) |
6 | 3 5 | bitri | ⊢ ( 𝑦 = 𝐴 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ 𝜑 ) ) |
7 | 6 | exbii | ⊢ ( ∃ 𝑦 𝑦 = 𝐴 ↔ ∃ 𝑦 ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ 𝜑 ) ) |
8 | 2 7 | bitri | ⊢ ( 𝐴 ∈ V ↔ ∃ 𝑦 ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ 𝜑 ) ) |