Metamath Proof Explorer


Theorem bj-clex

Description: Two ways of stating that a class is a set. (Contributed by BJ, 18-Jan-2025) (Proof modification is discouraged.)

Ref Expression
Hypothesis bj-clex.1 ( 𝑥𝐴𝜑 )
Assertion bj-clex ( 𝐴 ∈ V ↔ ∃ 𝑦𝑥 ( 𝑥𝑦𝜑 ) )

Proof

Step Hyp Ref Expression
1 bj-clex.1 ( 𝑥𝐴𝜑 )
2 isset ( 𝐴 ∈ V ↔ ∃ 𝑦 𝑦 = 𝐴 )
3 dfcleq ( 𝑦 = 𝐴 ↔ ∀ 𝑥 ( 𝑥𝑦𝑥𝐴 ) )
4 1 bibi2i ( ( 𝑥𝑦𝑥𝐴 ) ↔ ( 𝑥𝑦𝜑 ) )
5 4 albii ( ∀ 𝑥 ( 𝑥𝑦𝑥𝐴 ) ↔ ∀ 𝑥 ( 𝑥𝑦𝜑 ) )
6 3 5 bitri ( 𝑦 = 𝐴 ↔ ∀ 𝑥 ( 𝑥𝑦𝜑 ) )
7 6 exbii ( ∃ 𝑦 𝑦 = 𝐴 ↔ ∃ 𝑦𝑥 ( 𝑥𝑦𝜑 ) )
8 2 7 bitri ( 𝐴 ∈ V ↔ ∃ 𝑦𝑥 ( 𝑥𝑦𝜑 ) )