Metamath Proof Explorer


Theorem bj-clex

Description: Two ways of stating that a class is a set. (Contributed by BJ, 18-Jan-2025) (Proof modification is discouraged.)

Ref Expression
Hypothesis bj-clex.1
|- ( x e. A <-> ph )
Assertion bj-clex
|- ( A e. _V <-> E. y A. x ( x e. y <-> ph ) )

Proof

Step Hyp Ref Expression
1 bj-clex.1
 |-  ( x e. A <-> ph )
2 isset
 |-  ( A e. _V <-> E. y y = A )
3 dfcleq
 |-  ( y = A <-> A. x ( x e. y <-> x e. A ) )
4 1 bibi2i
 |-  ( ( x e. y <-> x e. A ) <-> ( x e. y <-> ph ) )
5 4 albii
 |-  ( A. x ( x e. y <-> x e. A ) <-> A. x ( x e. y <-> ph ) )
6 3 5 bitri
 |-  ( y = A <-> A. x ( x e. y <-> ph ) )
7 6 exbii
 |-  ( E. y y = A <-> E. y A. x ( x e. y <-> ph ) )
8 2 7 bitri
 |-  ( A e. _V <-> E. y A. x ( x e. y <-> ph ) )