Description: Two ways of stating that a class is a set. (Contributed by BJ, 18-Jan-2025) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | bj-clex.1 | |- ( x e. A <-> ph ) |
|
Assertion | bj-clex | |- ( A e. _V <-> E. y A. x ( x e. y <-> ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-clex.1 | |- ( x e. A <-> ph ) |
|
2 | isset | |- ( A e. _V <-> E. y y = A ) |
|
3 | dfcleq | |- ( y = A <-> A. x ( x e. y <-> x e. A ) ) |
|
4 | 1 | bibi2i | |- ( ( x e. y <-> x e. A ) <-> ( x e. y <-> ph ) ) |
5 | 4 | albii | |- ( A. x ( x e. y <-> x e. A ) <-> A. x ( x e. y <-> ph ) ) |
6 | 3 5 | bitri | |- ( y = A <-> A. x ( x e. y <-> ph ) ) |
7 | 6 | exbii | |- ( E. y y = A <-> E. y A. x ( x e. y <-> ph ) ) |
8 | 2 7 | bitri | |- ( A e. _V <-> E. y A. x ( x e. y <-> ph ) ) |