| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isset | ⊢ ( 𝐴  ∈  V  ↔  ∃ 𝑥 𝑥  =  𝐴 ) | 
						
							| 2 |  | pweq | ⊢ ( 𝑥  =  𝐴  →  𝒫  𝑥  =  𝒫  𝐴 ) | 
						
							| 3 | 2 | eximi | ⊢ ( ∃ 𝑥 𝑥  =  𝐴  →  ∃ 𝑥 𝒫  𝑥  =  𝒫  𝐴 ) | 
						
							| 4 |  | bj-snglss | ⊢ sngl  𝐴  ⊆  𝒫  𝐴 | 
						
							| 5 |  | sseq2 | ⊢ ( 𝒫  𝑥  =  𝒫  𝐴  →  ( sngl  𝐴  ⊆  𝒫  𝑥  ↔  sngl  𝐴  ⊆  𝒫  𝐴 ) ) | 
						
							| 6 | 4 5 | mpbiri | ⊢ ( 𝒫  𝑥  =  𝒫  𝐴  →  sngl  𝐴  ⊆  𝒫  𝑥 ) | 
						
							| 7 | 6 | eximi | ⊢ ( ∃ 𝑥 𝒫  𝑥  =  𝒫  𝐴  →  ∃ 𝑥 sngl  𝐴  ⊆  𝒫  𝑥 ) | 
						
							| 8 |  | vpwex | ⊢ 𝒫  𝑥  ∈  V | 
						
							| 9 | 8 | ssex | ⊢ ( sngl  𝐴  ⊆  𝒫  𝑥  →  sngl  𝐴  ∈  V ) | 
						
							| 10 | 9 | exlimiv | ⊢ ( ∃ 𝑥 sngl  𝐴  ⊆  𝒫  𝑥  →  sngl  𝐴  ∈  V ) | 
						
							| 11 | 3 7 10 | 3syl | ⊢ ( ∃ 𝑥 𝑥  =  𝐴  →  sngl  𝐴  ∈  V ) | 
						
							| 12 | 1 11 | sylbi | ⊢ ( 𝐴  ∈  V  →  sngl  𝐴  ∈  V ) | 
						
							| 13 |  | bj-snglinv | ⊢ 𝐴  =  { 𝑦  ∣  { 𝑦 }  ∈  sngl  𝐴 } | 
						
							| 14 |  | bj-snsetex | ⊢ ( sngl  𝐴  ∈  V  →  { 𝑦  ∣  { 𝑦 }  ∈  sngl  𝐴 }  ∈  V ) | 
						
							| 15 | 13 14 | eqeltrid | ⊢ ( sngl  𝐴  ∈  V  →  𝐴  ∈  V ) | 
						
							| 16 | 12 15 | impbii | ⊢ ( 𝐴  ∈  V  ↔  sngl  𝐴  ∈  V ) |