Metamath Proof Explorer


Theorem bj-snglex

Description: A class is a set if and only if its singletonization is a set. (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion bj-snglex ( 𝐴 ∈ V ↔ sngl 𝐴 ∈ V )

Proof

Step Hyp Ref Expression
1 isset ( 𝐴 ∈ V ↔ ∃ 𝑥 𝑥 = 𝐴 )
2 pweq ( 𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴 )
3 2 eximi ( ∃ 𝑥 𝑥 = 𝐴 → ∃ 𝑥 𝒫 𝑥 = 𝒫 𝐴 )
4 bj-snglss sngl 𝐴 ⊆ 𝒫 𝐴
5 sseq2 ( 𝒫 𝑥 = 𝒫 𝐴 → ( sngl 𝐴 ⊆ 𝒫 𝑥 ↔ sngl 𝐴 ⊆ 𝒫 𝐴 ) )
6 4 5 mpbiri ( 𝒫 𝑥 = 𝒫 𝐴 → sngl 𝐴 ⊆ 𝒫 𝑥 )
7 6 eximi ( ∃ 𝑥 𝒫 𝑥 = 𝒫 𝐴 → ∃ 𝑥 sngl 𝐴 ⊆ 𝒫 𝑥 )
8 vpwex 𝒫 𝑥 ∈ V
9 8 ssex ( sngl 𝐴 ⊆ 𝒫 𝑥 → sngl 𝐴 ∈ V )
10 9 exlimiv ( ∃ 𝑥 sngl 𝐴 ⊆ 𝒫 𝑥 → sngl 𝐴 ∈ V )
11 3 7 10 3syl ( ∃ 𝑥 𝑥 = 𝐴 → sngl 𝐴 ∈ V )
12 1 11 sylbi ( 𝐴 ∈ V → sngl 𝐴 ∈ V )
13 bj-snglinv 𝐴 = { 𝑦 ∣ { 𝑦 } ∈ sngl 𝐴 }
14 bj-snsetex ( sngl 𝐴 ∈ V → { 𝑦 ∣ { 𝑦 } ∈ sngl 𝐴 } ∈ V )
15 13 14 eqeltrid ( sngl 𝐴 ∈ V → 𝐴 ∈ V )
16 12 15 impbii ( 𝐴 ∈ V ↔ sngl 𝐴 ∈ V )