| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isset |
⊢ ( 𝐴 ∈ V ↔ ∃ 𝑥 𝑥 = 𝐴 ) |
| 2 |
|
pweq |
⊢ ( 𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴 ) |
| 3 |
2
|
eximi |
⊢ ( ∃ 𝑥 𝑥 = 𝐴 → ∃ 𝑥 𝒫 𝑥 = 𝒫 𝐴 ) |
| 4 |
|
bj-snglss |
⊢ sngl 𝐴 ⊆ 𝒫 𝐴 |
| 5 |
|
sseq2 |
⊢ ( 𝒫 𝑥 = 𝒫 𝐴 → ( sngl 𝐴 ⊆ 𝒫 𝑥 ↔ sngl 𝐴 ⊆ 𝒫 𝐴 ) ) |
| 6 |
4 5
|
mpbiri |
⊢ ( 𝒫 𝑥 = 𝒫 𝐴 → sngl 𝐴 ⊆ 𝒫 𝑥 ) |
| 7 |
6
|
eximi |
⊢ ( ∃ 𝑥 𝒫 𝑥 = 𝒫 𝐴 → ∃ 𝑥 sngl 𝐴 ⊆ 𝒫 𝑥 ) |
| 8 |
|
vpwex |
⊢ 𝒫 𝑥 ∈ V |
| 9 |
8
|
ssex |
⊢ ( sngl 𝐴 ⊆ 𝒫 𝑥 → sngl 𝐴 ∈ V ) |
| 10 |
9
|
exlimiv |
⊢ ( ∃ 𝑥 sngl 𝐴 ⊆ 𝒫 𝑥 → sngl 𝐴 ∈ V ) |
| 11 |
3 7 10
|
3syl |
⊢ ( ∃ 𝑥 𝑥 = 𝐴 → sngl 𝐴 ∈ V ) |
| 12 |
1 11
|
sylbi |
⊢ ( 𝐴 ∈ V → sngl 𝐴 ∈ V ) |
| 13 |
|
bj-snglinv |
⊢ 𝐴 = { 𝑦 ∣ { 𝑦 } ∈ sngl 𝐴 } |
| 14 |
|
bj-snsetex |
⊢ ( sngl 𝐴 ∈ V → { 𝑦 ∣ { 𝑦 } ∈ sngl 𝐴 } ∈ V ) |
| 15 |
13 14
|
eqeltrid |
⊢ ( sngl 𝐴 ∈ V → 𝐴 ∈ V ) |
| 16 |
12 15
|
impbii |
⊢ ( 𝐴 ∈ V ↔ sngl 𝐴 ∈ V ) |