Step |
Hyp |
Ref |
Expression |
1 |
|
isset |
⊢ ( 𝐴 ∈ V ↔ ∃ 𝑥 𝑥 = 𝐴 ) |
2 |
|
pweq |
⊢ ( 𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴 ) |
3 |
2
|
eximi |
⊢ ( ∃ 𝑥 𝑥 = 𝐴 → ∃ 𝑥 𝒫 𝑥 = 𝒫 𝐴 ) |
4 |
|
bj-snglss |
⊢ sngl 𝐴 ⊆ 𝒫 𝐴 |
5 |
|
sseq2 |
⊢ ( 𝒫 𝑥 = 𝒫 𝐴 → ( sngl 𝐴 ⊆ 𝒫 𝑥 ↔ sngl 𝐴 ⊆ 𝒫 𝐴 ) ) |
6 |
4 5
|
mpbiri |
⊢ ( 𝒫 𝑥 = 𝒫 𝐴 → sngl 𝐴 ⊆ 𝒫 𝑥 ) |
7 |
6
|
eximi |
⊢ ( ∃ 𝑥 𝒫 𝑥 = 𝒫 𝐴 → ∃ 𝑥 sngl 𝐴 ⊆ 𝒫 𝑥 ) |
8 |
|
vpwex |
⊢ 𝒫 𝑥 ∈ V |
9 |
8
|
ssex |
⊢ ( sngl 𝐴 ⊆ 𝒫 𝑥 → sngl 𝐴 ∈ V ) |
10 |
9
|
exlimiv |
⊢ ( ∃ 𝑥 sngl 𝐴 ⊆ 𝒫 𝑥 → sngl 𝐴 ∈ V ) |
11 |
3 7 10
|
3syl |
⊢ ( ∃ 𝑥 𝑥 = 𝐴 → sngl 𝐴 ∈ V ) |
12 |
1 11
|
sylbi |
⊢ ( 𝐴 ∈ V → sngl 𝐴 ∈ V ) |
13 |
|
bj-snglinv |
⊢ 𝐴 = { 𝑦 ∣ { 𝑦 } ∈ sngl 𝐴 } |
14 |
|
bj-snsetex |
⊢ ( sngl 𝐴 ∈ V → { 𝑦 ∣ { 𝑦 } ∈ sngl 𝐴 } ∈ V ) |
15 |
13 14
|
eqeltrid |
⊢ ( sngl 𝐴 ∈ V → 𝐴 ∈ V ) |
16 |
12 15
|
impbii |
⊢ ( 𝐴 ∈ V ↔ sngl 𝐴 ∈ V ) |