Metamath Proof Explorer


Theorem bj-tagex

Description: A class is a set if and only if its tagging is a set. (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion bj-tagex ( 𝐴 ∈ V ↔ tag 𝐴 ∈ V )

Proof

Step Hyp Ref Expression
1 bj-snglex ( 𝐴 ∈ V ↔ sngl 𝐴 ∈ V )
2 p0ex { ∅ } ∈ V
3 2 biantru ( sngl 𝐴 ∈ V ↔ ( sngl 𝐴 ∈ V ∧ { ∅ } ∈ V ) )
4 1 3 bitri ( 𝐴 ∈ V ↔ ( sngl 𝐴 ∈ V ∧ { ∅ } ∈ V ) )
5 unexb ( ( sngl 𝐴 ∈ V ∧ { ∅ } ∈ V ) ↔ ( sngl 𝐴 ∪ { ∅ } ) ∈ V )
6 df-bj-tag tag 𝐴 = ( sngl 𝐴 ∪ { ∅ } )
7 6 eqcomi ( sngl 𝐴 ∪ { ∅ } ) = tag 𝐴
8 7 eleq1i ( ( sngl 𝐴 ∪ { ∅ } ) ∈ V ↔ tag 𝐴 ∈ V )
9 4 5 8 3bitri ( 𝐴 ∈ V ↔ tag 𝐴 ∈ V )