Description: A class is a set if and only if its tagging is a set. (Contributed by BJ, 6-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-tagex | ⊢ ( 𝐴 ∈ V ↔ tag 𝐴 ∈ V ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bj-snglex | ⊢ ( 𝐴 ∈ V ↔ sngl 𝐴 ∈ V ) | |
| 2 | p0ex | ⊢ { ∅ } ∈ V | |
| 3 | 2 | biantru | ⊢ ( sngl 𝐴 ∈ V ↔ ( sngl 𝐴 ∈ V ∧ { ∅ } ∈ V ) ) | 
| 4 | 1 3 | bitri | ⊢ ( 𝐴 ∈ V ↔ ( sngl 𝐴 ∈ V ∧ { ∅ } ∈ V ) ) | 
| 5 | unexb | ⊢ ( ( sngl 𝐴 ∈ V ∧ { ∅ } ∈ V ) ↔ ( sngl 𝐴 ∪ { ∅ } ) ∈ V ) | |
| 6 | df-bj-tag | ⊢ tag 𝐴 = ( sngl 𝐴 ∪ { ∅ } ) | |
| 7 | 6 | eqcomi | ⊢ ( sngl 𝐴 ∪ { ∅ } ) = tag 𝐴 | 
| 8 | 7 | eleq1i | ⊢ ( ( sngl 𝐴 ∪ { ∅ } ) ∈ V ↔ tag 𝐴 ∈ V ) | 
| 9 | 4 5 8 | 3bitri | ⊢ ( 𝐴 ∈ V ↔ tag 𝐴 ∈ V ) |