Description: A class is a set if and only if its tagging is a set. (Contributed by BJ, 6-Oct-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-tagex | ⊢ ( 𝐴 ∈ V ↔ tag 𝐴 ∈ V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-snglex | ⊢ ( 𝐴 ∈ V ↔ sngl 𝐴 ∈ V ) | |
2 | p0ex | ⊢ { ∅ } ∈ V | |
3 | 2 | biantru | ⊢ ( sngl 𝐴 ∈ V ↔ ( sngl 𝐴 ∈ V ∧ { ∅ } ∈ V ) ) |
4 | 1 3 | bitri | ⊢ ( 𝐴 ∈ V ↔ ( sngl 𝐴 ∈ V ∧ { ∅ } ∈ V ) ) |
5 | unexb | ⊢ ( ( sngl 𝐴 ∈ V ∧ { ∅ } ∈ V ) ↔ ( sngl 𝐴 ∪ { ∅ } ) ∈ V ) | |
6 | df-bj-tag | ⊢ tag 𝐴 = ( sngl 𝐴 ∪ { ∅ } ) | |
7 | 6 | eqcomi | ⊢ ( sngl 𝐴 ∪ { ∅ } ) = tag 𝐴 |
8 | 7 | eleq1i | ⊢ ( ( sngl 𝐴 ∪ { ∅ } ) ∈ V ↔ tag 𝐴 ∈ V ) |
9 | 4 5 8 | 3bitri | ⊢ ( 𝐴 ∈ V ↔ tag 𝐴 ∈ V ) |