Metamath Proof Explorer


Definition df-bj-tag

Description: Definition of the tagged copy of a class, that is, the adjunction to (an isomorph of) A of a disjoint element (here, the empty set). Remark: this could be used for the one-point compactification of a topological space. (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion df-bj-tag tag 𝐴 = ( sngl 𝐴 ∪ { ∅ } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA 𝐴
1 0 bj-ctag tag 𝐴
2 0 bj-csngl sngl 𝐴
3 c0
4 3 csn { ∅ }
5 2 4 cun ( sngl 𝐴 ∪ { ∅ } )
6 1 5 wceq tag 𝐴 = ( sngl 𝐴 ∪ { ∅ } )