Metamath Proof Explorer


Theorem bj-tageq

Description: Substitution property for tag . (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion bj-tageq ( 𝐴 = 𝐵 → tag 𝐴 = tag 𝐵 )

Proof

Step Hyp Ref Expression
1 bj-sngleq ( 𝐴 = 𝐵 → sngl 𝐴 = sngl 𝐵 )
2 1 uneq1d ( 𝐴 = 𝐵 → ( sngl 𝐴 ∪ { ∅ } ) = ( sngl 𝐵 ∪ { ∅ } ) )
3 df-bj-tag tag 𝐴 = ( sngl 𝐴 ∪ { ∅ } )
4 df-bj-tag tag 𝐵 = ( sngl 𝐵 ∪ { ∅ } )
5 2 3 4 3eqtr4g ( 𝐴 = 𝐵 → tag 𝐴 = tag 𝐵 )