Metamath Proof Explorer


Theorem bj-tageq

Description: Substitution property for tag . (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion bj-tageq
|- ( A = B -> tag A = tag B )

Proof

Step Hyp Ref Expression
1 bj-sngleq
 |-  ( A = B -> sngl A = sngl B )
2 1 uneq1d
 |-  ( A = B -> ( sngl A u. { (/) } ) = ( sngl B u. { (/) } ) )
3 df-bj-tag
 |-  tag A = ( sngl A u. { (/) } )
4 df-bj-tag
 |-  tag B = ( sngl B u. { (/) } )
5 2 3 4 3eqtr4g
 |-  ( A = B -> tag A = tag B )