Metamath Proof Explorer


Definition df-bj-tag

Description: Definition of the tagged copy of a class, that is, the adjunction to (an isomorph of) A of a disjoint element (here, the empty set). Remark: this could be used for the one-point compactification of a topological space. (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion df-bj-tag
|- tag A = ( sngl A u. { (/) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA
 |-  A
1 0 bj-ctag
 |-  tag A
2 0 bj-csngl
 |-  sngl A
3 c0
 |-  (/)
4 3 csn
 |-  { (/) }
5 2 4 cun
 |-  ( sngl A u. { (/) } )
6 1 5 wceq
 |-  tag A = ( sngl A u. { (/) } )