Metamath Proof Explorer


Definition df-bj-tag

Description: Definition of the tagged copy of a class, that is, the adjunction to (an isomorph of) A of a disjoint element (here, the empty set). Remark: this could be used for the one-point compactification of a topological space. (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion df-bj-tag tag A = sngl A

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA class A
1 0 bj-ctag class tag A
2 0 bj-csngl class sngl A
3 c0 class
4 3 csn class
5 2 4 cun class sngl A
6 1 5 wceq wff tag A = sngl A