Metamath Proof Explorer


Theorem bj-eltag

Description: Characterization of the elements of the tagging of a class. (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion bj-eltag
|- ( A e. tag B <-> ( E. x e. B A = { x } \/ A = (/) ) )

Proof

Step Hyp Ref Expression
1 df-bj-tag
 |-  tag B = ( sngl B u. { (/) } )
2 1 eleq2i
 |-  ( A e. tag B <-> A e. ( sngl B u. { (/) } ) )
3 elun
 |-  ( A e. ( sngl B u. { (/) } ) <-> ( A e. sngl B \/ A e. { (/) } ) )
4 bj-elsngl
 |-  ( A e. sngl B <-> E. x e. B A = { x } )
5 0ex
 |-  (/) e. _V
6 5 elsn2
 |-  ( A e. { (/) } <-> A = (/) )
7 4 6 orbi12i
 |-  ( ( A e. sngl B \/ A e. { (/) } ) <-> ( E. x e. B A = { x } \/ A = (/) ) )
8 2 3 7 3bitri
 |-  ( A e. tag B <-> ( E. x e. B A = { x } \/ A = (/) ) )