Metamath Proof Explorer


Theorem bj-tagex

Description: A class is a set if and only if its tagging is a set. (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion bj-tagex AVtagAV

Proof

Step Hyp Ref Expression
1 bj-snglex AVsnglAV
2 p0ex V
3 2 biantru snglAVsnglAVV
4 1 3 bitri AVsnglAVV
5 unexb snglAVVsnglAV
6 df-bj-tag tagA=snglA
7 6 eqcomi snglA=tagA
8 7 eleq1i snglAVtagAV
9 4 5 8 3bitri AVtagAV