Description: A class is a set if and only if its tagging is a set. (Contributed by BJ, 6-Oct-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-tagex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-snglex | ||
2 | p0ex | ||
3 | 2 | biantru | |
4 | 1 3 | bitri | |
5 | unexb | ||
6 | df-bj-tag | ||
7 | 6 | eqcomi | |
8 | 7 | eleq1i | |
9 | 4 5 8 | 3bitri |