Metamath Proof Explorer


Theorem bj-tagex

Description: A class is a set if and only if its tagging is a set. (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion bj-tagex A V tag A V

Proof

Step Hyp Ref Expression
1 bj-snglex A V sngl A V
2 p0ex V
3 2 biantru sngl A V sngl A V V
4 1 3 bitri A V sngl A V V
5 unexb sngl A V V sngl A V
6 df-bj-tag tag A = sngl A
7 6 eqcomi sngl A = tag A
8 7 eleq1i sngl A V tag A V
9 4 5 8 3bitri A V tag A V