| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bj-sngltagi |
⊢ ( { 𝐴 } ∈ sngl 𝐵 → { 𝐴 } ∈ tag 𝐵 ) |
| 2 |
|
df-bj-tag |
⊢ tag 𝐵 = ( sngl 𝐵 ∪ { ∅ } ) |
| 3 |
2
|
eleq2i |
⊢ ( { 𝐴 } ∈ tag 𝐵 ↔ { 𝐴 } ∈ ( sngl 𝐵 ∪ { ∅ } ) ) |
| 4 |
|
elun |
⊢ ( { 𝐴 } ∈ ( sngl 𝐵 ∪ { ∅ } ) ↔ ( { 𝐴 } ∈ sngl 𝐵 ∨ { 𝐴 } ∈ { ∅ } ) ) |
| 5 |
|
idd |
⊢ ( 𝐴 ∈ 𝑉 → ( { 𝐴 } ∈ sngl 𝐵 → { 𝐴 } ∈ sngl 𝐵 ) ) |
| 6 |
|
elsni |
⊢ ( { 𝐴 } ∈ { ∅ } → { 𝐴 } = ∅ ) |
| 7 |
|
snprc |
⊢ ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ ) |
| 8 |
|
elex |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) |
| 9 |
8
|
pm2.24d |
⊢ ( 𝐴 ∈ 𝑉 → ( ¬ 𝐴 ∈ V → { 𝐴 } ∈ sngl 𝐵 ) ) |
| 10 |
7 9
|
biimtrrid |
⊢ ( 𝐴 ∈ 𝑉 → ( { 𝐴 } = ∅ → { 𝐴 } ∈ sngl 𝐵 ) ) |
| 11 |
6 10
|
syl5 |
⊢ ( 𝐴 ∈ 𝑉 → ( { 𝐴 } ∈ { ∅ } → { 𝐴 } ∈ sngl 𝐵 ) ) |
| 12 |
5 11
|
jaod |
⊢ ( 𝐴 ∈ 𝑉 → ( ( { 𝐴 } ∈ sngl 𝐵 ∨ { 𝐴 } ∈ { ∅ } ) → { 𝐴 } ∈ sngl 𝐵 ) ) |
| 13 |
4 12
|
biimtrid |
⊢ ( 𝐴 ∈ 𝑉 → ( { 𝐴 } ∈ ( sngl 𝐵 ∪ { ∅ } ) → { 𝐴 } ∈ sngl 𝐵 ) ) |
| 14 |
3 13
|
biimtrid |
⊢ ( 𝐴 ∈ 𝑉 → ( { 𝐴 } ∈ tag 𝐵 → { 𝐴 } ∈ sngl 𝐵 ) ) |
| 15 |
1 14
|
impbid2 |
⊢ ( 𝐴 ∈ 𝑉 → ( { 𝐴 } ∈ sngl 𝐵 ↔ { 𝐴 } ∈ tag 𝐵 ) ) |