| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bj-sngltagi | ⊢ ( { 𝐴 }  ∈  sngl  𝐵  →  { 𝐴 }  ∈  tag  𝐵 ) | 
						
							| 2 |  | df-bj-tag | ⊢ tag  𝐵  =  ( sngl  𝐵  ∪  { ∅ } ) | 
						
							| 3 | 2 | eleq2i | ⊢ ( { 𝐴 }  ∈  tag  𝐵  ↔  { 𝐴 }  ∈  ( sngl  𝐵  ∪  { ∅ } ) ) | 
						
							| 4 |  | elun | ⊢ ( { 𝐴 }  ∈  ( sngl  𝐵  ∪  { ∅ } )  ↔  ( { 𝐴 }  ∈  sngl  𝐵  ∨  { 𝐴 }  ∈  { ∅ } ) ) | 
						
							| 5 |  | idd | ⊢ ( 𝐴  ∈  𝑉  →  ( { 𝐴 }  ∈  sngl  𝐵  →  { 𝐴 }  ∈  sngl  𝐵 ) ) | 
						
							| 6 |  | elsni | ⊢ ( { 𝐴 }  ∈  { ∅ }  →  { 𝐴 }  =  ∅ ) | 
						
							| 7 |  | snprc | ⊢ ( ¬  𝐴  ∈  V  ↔  { 𝐴 }  =  ∅ ) | 
						
							| 8 |  | elex | ⊢ ( 𝐴  ∈  𝑉  →  𝐴  ∈  V ) | 
						
							| 9 | 8 | pm2.24d | ⊢ ( 𝐴  ∈  𝑉  →  ( ¬  𝐴  ∈  V  →  { 𝐴 }  ∈  sngl  𝐵 ) ) | 
						
							| 10 | 7 9 | biimtrrid | ⊢ ( 𝐴  ∈  𝑉  →  ( { 𝐴 }  =  ∅  →  { 𝐴 }  ∈  sngl  𝐵 ) ) | 
						
							| 11 | 6 10 | syl5 | ⊢ ( 𝐴  ∈  𝑉  →  ( { 𝐴 }  ∈  { ∅ }  →  { 𝐴 }  ∈  sngl  𝐵 ) ) | 
						
							| 12 | 5 11 | jaod | ⊢ ( 𝐴  ∈  𝑉  →  ( ( { 𝐴 }  ∈  sngl  𝐵  ∨  { 𝐴 }  ∈  { ∅ } )  →  { 𝐴 }  ∈  sngl  𝐵 ) ) | 
						
							| 13 | 4 12 | biimtrid | ⊢ ( 𝐴  ∈  𝑉  →  ( { 𝐴 }  ∈  ( sngl  𝐵  ∪  { ∅ } )  →  { 𝐴 }  ∈  sngl  𝐵 ) ) | 
						
							| 14 | 3 13 | biimtrid | ⊢ ( 𝐴  ∈  𝑉  →  ( { 𝐴 }  ∈  tag  𝐵  →  { 𝐴 }  ∈  sngl  𝐵 ) ) | 
						
							| 15 | 1 14 | impbid2 | ⊢ ( 𝐴  ∈  𝑉  →  ( { 𝐴 }  ∈  sngl  𝐵  ↔  { 𝐴 }  ∈  tag  𝐵 ) ) |