Metamath Proof Explorer


Theorem bj-tagci

Description: Characterization of the elements of B in terms of elements of its tagged version. (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion bj-tagci ( 𝐴𝐵 → { 𝐴 } ∈ tag 𝐵 )

Proof

Step Hyp Ref Expression
1 bj-snglc ( 𝐴𝐵 ↔ { 𝐴 } ∈ sngl 𝐵 )
2 bj-sngltagi ( { 𝐴 } ∈ sngl 𝐵 → { 𝐴 } ∈ tag 𝐵 )
3 1 2 sylbi ( 𝐴𝐵 → { 𝐴 } ∈ tag 𝐵 )