Metamath Proof Explorer


Theorem bj-tagcg

Description: Characterization of the elements of B in terms of elements of its tagged version. (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion bj-tagcg ( 𝐴𝑉 → ( 𝐴𝐵 ↔ { 𝐴 } ∈ tag 𝐵 ) )

Proof

Step Hyp Ref Expression
1 bj-snglc ( 𝐴𝐵 ↔ { 𝐴 } ∈ sngl 𝐵 )
2 bj-sngltag ( 𝐴𝑉 → ( { 𝐴 } ∈ sngl 𝐵 ↔ { 𝐴 } ∈ tag 𝐵 ) )
3 1 2 syl5bb ( 𝐴𝑉 → ( 𝐴𝐵 ↔ { 𝐴 } ∈ tag 𝐵 ) )