| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elsng |  |-  ( A e. V -> ( A e. { B } <-> A = B ) ) | 
						
							| 2 |  | bj-xpima2sn |  |-  ( A e. { B } -> ( ( { B } X. tag C ) " { A } ) = tag C ) | 
						
							| 3 | 1 2 | biimtrrdi |  |-  ( A e. V -> ( A = B -> ( ( { B } X. tag C ) " { A } ) = tag C ) ) | 
						
							| 4 | 3 | imp |  |-  ( ( A e. V /\ A = B ) -> ( ( { B } X. tag C ) " { A } ) = tag C ) | 
						
							| 5 | 4 | eleq2d |  |-  ( ( A e. V /\ A = B ) -> ( { x } e. ( ( { B } X. tag C ) " { A } ) <-> { x } e. tag C ) ) | 
						
							| 6 | 5 | abbidv |  |-  ( ( A e. V /\ A = B ) -> { x | { x } e. ( ( { B } X. tag C ) " { A } ) } = { x | { x } e. tag C } ) | 
						
							| 7 |  | df-bj-proj |  |-  ( A Proj ( { B } X. tag C ) ) = { x | { x } e. ( ( { B } X. tag C ) " { A } ) } | 
						
							| 8 |  | bj-taginv |  |-  C = { x | { x } e. tag C } | 
						
							| 9 | 6 7 8 | 3eqtr4g |  |-  ( ( A e. V /\ A = B ) -> ( A Proj ( { B } X. tag C ) ) = C ) | 
						
							| 10 | 9 | ex |  |-  ( A e. V -> ( A = B -> ( A Proj ( { B } X. tag C ) ) = C ) ) | 
						
							| 11 |  | noel |  |-  -. { x } e. (/) | 
						
							| 12 | 7 | eqabri |  |-  ( x e. ( A Proj ( { B } X. tag C ) ) <-> { x } e. ( ( { B } X. tag C ) " { A } ) ) | 
						
							| 13 |  | elsni |  |-  ( A e. { B } -> A = B ) | 
						
							| 14 |  | bj-xpima1sn |  |-  ( -. A e. { B } -> ( ( { B } X. tag C ) " { A } ) = (/) ) | 
						
							| 15 | 13 14 | nsyl5 |  |-  ( -. A = B -> ( ( { B } X. tag C ) " { A } ) = (/) ) | 
						
							| 16 | 15 | eleq2d |  |-  ( -. A = B -> ( { x } e. ( ( { B } X. tag C ) " { A } ) <-> { x } e. (/) ) ) | 
						
							| 17 | 12 16 | bitrid |  |-  ( -. A = B -> ( x e. ( A Proj ( { B } X. tag C ) ) <-> { x } e. (/) ) ) | 
						
							| 18 | 11 17 | mtbiri |  |-  ( -. A = B -> -. x e. ( A Proj ( { B } X. tag C ) ) ) | 
						
							| 19 | 18 | eq0rdv |  |-  ( -. A = B -> ( A Proj ( { B } X. tag C ) ) = (/) ) | 
						
							| 20 |  | ifval |  |-  ( ( A Proj ( { B } X. tag C ) ) = if ( A = B , C , (/) ) <-> ( ( A = B -> ( A Proj ( { B } X. tag C ) ) = C ) /\ ( -. A = B -> ( A Proj ( { B } X. tag C ) ) = (/) ) ) ) | 
						
							| 21 | 10 19 20 | sylanblrc |  |-  ( A e. V -> ( A Proj ( { B } X. tag C ) ) = if ( A = B , C , (/) ) ) | 
						
							| 22 |  | eqcom |  |-  ( A = B <-> B = A ) | 
						
							| 23 |  | ifbi |  |-  ( ( A = B <-> B = A ) -> if ( A = B , C , (/) ) = if ( B = A , C , (/) ) ) | 
						
							| 24 | 22 23 | ax-mp |  |-  if ( A = B , C , (/) ) = if ( B = A , C , (/) ) | 
						
							| 25 | 21 24 | eqtrdi |  |-  ( A e. V -> ( A Proj ( { B } X. tag C ) ) = if ( B = A , C , (/) ) ) |