Step |
Hyp |
Ref |
Expression |
1 |
|
elsng |
|- ( A e. V -> ( A e. { B } <-> A = B ) ) |
2 |
|
bj-xpima2sn |
|- ( A e. { B } -> ( ( { B } X. tag C ) " { A } ) = tag C ) |
3 |
1 2
|
syl6bir |
|- ( A e. V -> ( A = B -> ( ( { B } X. tag C ) " { A } ) = tag C ) ) |
4 |
3
|
imp |
|- ( ( A e. V /\ A = B ) -> ( ( { B } X. tag C ) " { A } ) = tag C ) |
5 |
4
|
eleq2d |
|- ( ( A e. V /\ A = B ) -> ( { x } e. ( ( { B } X. tag C ) " { A } ) <-> { x } e. tag C ) ) |
6 |
5
|
abbidv |
|- ( ( A e. V /\ A = B ) -> { x | { x } e. ( ( { B } X. tag C ) " { A } ) } = { x | { x } e. tag C } ) |
7 |
|
df-bj-proj |
|- ( A Proj ( { B } X. tag C ) ) = { x | { x } e. ( ( { B } X. tag C ) " { A } ) } |
8 |
|
bj-taginv |
|- C = { x | { x } e. tag C } |
9 |
6 7 8
|
3eqtr4g |
|- ( ( A e. V /\ A = B ) -> ( A Proj ( { B } X. tag C ) ) = C ) |
10 |
9
|
ex |
|- ( A e. V -> ( A = B -> ( A Proj ( { B } X. tag C ) ) = C ) ) |
11 |
|
noel |
|- -. { x } e. (/) |
12 |
7
|
abeq2i |
|- ( x e. ( A Proj ( { B } X. tag C ) ) <-> { x } e. ( ( { B } X. tag C ) " { A } ) ) |
13 |
|
elsni |
|- ( A e. { B } -> A = B ) |
14 |
|
bj-xpima1sn |
|- ( -. A e. { B } -> ( ( { B } X. tag C ) " { A } ) = (/) ) |
15 |
13 14
|
nsyl5 |
|- ( -. A = B -> ( ( { B } X. tag C ) " { A } ) = (/) ) |
16 |
15
|
eleq2d |
|- ( -. A = B -> ( { x } e. ( ( { B } X. tag C ) " { A } ) <-> { x } e. (/) ) ) |
17 |
12 16
|
syl5bb |
|- ( -. A = B -> ( x e. ( A Proj ( { B } X. tag C ) ) <-> { x } e. (/) ) ) |
18 |
11 17
|
mtbiri |
|- ( -. A = B -> -. x e. ( A Proj ( { B } X. tag C ) ) ) |
19 |
18
|
eq0rdv |
|- ( -. A = B -> ( A Proj ( { B } X. tag C ) ) = (/) ) |
20 |
|
ifval |
|- ( ( A Proj ( { B } X. tag C ) ) = if ( A = B , C , (/) ) <-> ( ( A = B -> ( A Proj ( { B } X. tag C ) ) = C ) /\ ( -. A = B -> ( A Proj ( { B } X. tag C ) ) = (/) ) ) ) |
21 |
10 19 20
|
sylanblrc |
|- ( A e. V -> ( A Proj ( { B } X. tag C ) ) = if ( A = B , C , (/) ) ) |
22 |
|
eqcom |
|- ( A = B <-> B = A ) |
23 |
|
ifbi |
|- ( ( A = B <-> B = A ) -> if ( A = B , C , (/) ) = if ( B = A , C , (/) ) ) |
24 |
22 23
|
ax-mp |
|- if ( A = B , C , (/) ) = if ( B = A , C , (/) ) |
25 |
21 24
|
eqtrdi |
|- ( A e. V -> ( A Proj ( { B } X. tag C ) ) = if ( B = A , C , (/) ) ) |